分享

spark json文件parquet文件,和常用的文件,jdbc等数据源

easthome001 发表于 2016-12-16 15:10:31 [显示全部楼层] 回帖奖励 阅读模式 关闭右栏 0 9678
sparksql各种数据源的测试:
大致的有json文件parquet文件,和常用的文件,jdbc等

代码:

一般过程:
第一步创建:利用SparkSeesion进行创建,一般是sparkSeesion.read.format(“格式”).load(“文件路径”)
第二部:进行一般操作
第三部:保存文件,或者保存到其他的地方:一般是sparkSeesion.write.format(“格式”).save(“文件路径”)


[mw_shl_code=java,true]package sql

import org.apache.spark.sql.SparkSession

object SQLDataSourceExample {

  case class Person(name: String, age: Long)

  def main(args: Array[String]) {
    val spark = SparkSession
      .builder()
      .master("local
  • ")
          .appName("Spark SQL data sources example")
          .config("spark.some.config.option", "some-value")
          .getOrCreate()

        /*runBasicDataSourceExample(spark)
        runBasicParquetExample(spark)*/
        runParquetSchemaMergingExample(spark)
        /* runJsonDatasetExample(spark)
        runJdbcDatasetExample(spark)*/

        spark.stop()
      }

      private def runBasicDataSourceExample(spark: SparkSession): Unit = {
        println("--------------------      runBasicDataSourceExample  start    -----------------")
        // $example on:generic_load_save_functions$
        val usersDF = spark.read.load("spark_sql/src/main/resources/users.parquet")
        println("--------------------parquet-----------------")
        usersDF.printSchema()
        usersDF.show()
        usersDF.select("name", "favorite_color").write.save("spark_sql/src/main/resources/result/namesAndFavColors.parquet1")
        // $example off:generic_load_save_functions$
        // $example on:manual_load_options$
        println("--------------------json-----------------")
        val peopleDF = spark.read.format("json").load("spark_sql/src/main/resources/people.json")
        peopleDF.show()
        peopleDF.select("name", "age").write.format("parquet").save("spark_sql/src/main/resources/result/namesAndAges.parquet1")

        println("--------------------直接使用sql-----------------")
        val sqlDF = spark.sql("SELECT * FROM parquet.`spark_sql/src/main/resources/users.parquet`")
        sqlDF.show()

        println("--------------------      runBasicDataSourceExample  end    -----------------")
      }

      private def runBasicParquetExample(spark: SparkSession): Unit = {
        println("--------------------      runBasicParquetExample  start    -----------------")
        import spark.implicits._

        val peopleDF = spark.read.json("spark_sql/src/main/resources/people.json")

        peopleDF.write.parquet("spark_sql/src/main/resource/result/people.parquet")

        val parquetFileDF = spark.read.parquet("spark_sql/src/main/resource/result/people.parquet")

        println("-------创建临时表进行sql-------")
        parquetFileDF.createOrReplaceTempView("parquetFile")
        val namesDF = spark.sql("SELECT name FROM parquetFile WHERE age BETWEEN 13 AND 19")
        namesDF.map(attributes => "Name: " + attributes(0)).show()

        println("--------------------      runBasicParquetExample  end    -----------------")
      }

      private def runParquetSchemaMergingExample(spark: SparkSession): Unit = {
        println("--------------------      runParquetSchemaMergingExample  start    -----------------")
        import spark.implicits._
    println("---------创建一个普通的dataframe,然后保存为一个square文件------")
        // Create a simple DataFrame, store into a partition directory
        val squaresDF = spark.sparkContext.makeRDD(1 to 5).map(i => (i, i * i)).toDF("value", "square")
        squaresDF.write.parquet("spark_sql/src/main/resource/result/data/test_table_key=1")

        // Create another DataFrame in a new partition directory,
        // adding a new column and dropping an existing column
        val cubesDF = spark.sparkContext.makeRDD(6 to 10).map(i => (i, i * i * i)).toDF("value", "cube")
        cubesDF.write.parquet("spark_sql/src/main/resource/result/data/test_table_key=2")

        // Read the partitioned table
        val mergedDF = spark.read.option("mergeSchema", "true").parquet("data/test_table")
        mergedDF.printSchema()

        // The final schema consists of all 3 columns in the Parquet files together
        // with the partitioning column appeared in the partition directory paths
        // root
        //  |-- value: int (nullable = true)
        //  |-- square: int (nullable = true)
        //  |-- cube: int (nullable = true)
        //  |-- key: int (nullable = true)
        // $example off:schema_merging$
      }

      private def runJsonDatasetExample(spark: SparkSession): Unit = {
        // $example on:json_dataset$
        // A JSON dataset is pointed to by path.
        // The path can be either a single text file or a directory storing text files
        val path = "examples/src/main/resources/people.json"
        val peopleDF = spark.read.json(path)

        // The inferred schema can be visualized using the printSchema() method
        peopleDF.printSchema()
        // root
        //  |-- age: long (nullable = true)
        //  |-- name: string (nullable = true)

        // Creates a temporary view using the DataFrame
        peopleDF.createOrReplaceTempView("people")

        // SQL statements can be run by using the sql methods provided by spark
        val teenagerNamesDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19")
        teenagerNamesDF.show()
        // +------+
        // |  name|
        // +------+
        // |Justin|
        // +------+

        // Alternatively, a DataFrame can be created for a JSON dataset represented by
        // an RDD[String] storing one JSON object per string
        val otherPeopleRDD = spark.sparkContext.makeRDD(
          """{"name":"Yin","address":{"city":"Columbus","state":"Ohio"}}""" :: Nil)
        val otherPeople = spark.read.json(otherPeopleRDD)
        otherPeople.show()
        // +---------------+----+
        // |        address|name|
        // +---------------+----+
        // |[Columbus,Ohio]| Yin|
        // +---------------+----+
        // $example off:json_dataset$
      }

      private def runJdbcDatasetExample(spark: SparkSession): Unit = {

        val jdbcDF = spark.read
          .format("jdbc")
          .option("url", "jdbc:postgresql:dbserver")
          .option("dbtable", "schema.tablename")
          .option("user", "username")
          .option("password", "password")
          .load()
        // $example off:jdbc_dataset$
      }
    }[/mw_shl_code]

    来自:csdn
    作者:韩利鹏

  • 没找到任何评论,期待你打破沉寂

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    关闭

    推荐上一条 /2 下一条