分享

深度学习(6)-长短时记忆网络(LSTM)详解【零基础入门】



问题导读:

1.怎样实现长短时记忆网络?
2.怎样训练长短时记忆网络?
3.实现长短时记忆网络有哪几种方法?









往期回顾
上一篇文章中,我们介绍了循环神经网络以及它的训练算法。我们也介绍了循环神经网络很难训练的原因,这导致了它在实际应用中,很难处理长距离的依赖。在本文中,我们将介绍一种改进之后的循环神经网络:长短时记忆网络(Long Short Term Memory Network, LSTM),它成功的解决了原始循环神经网络的缺陷,成为当前最流行的RNN,在语音识别、图片描述、自然语言处理等许多领域中成功应用。但不幸的一面是,LSTM的结构很复杂,因此,我们需要花上一些力气,才能把LSTM以及它的训练算法弄明白。在搞清楚LSTM之后,我们再介绍一种LSTM的变体:GRU (Gated Recurrent Unit)。 它的结构比LSTM简单,而效果却和LSTM一样好,因此,它正在逐渐流行起来。最后,我们仍然会动手实现一个LSTM。

长短时记忆网络是啥
我们首先了解一下长短时记忆网络产生的背景。回顾一下零基础入门深度学习(5) - 循环神经网络中推导的,误差项沿时间反向传播的公式:

屏幕快照 2017-03-19 18.12.28.png

2256672-48784f6366412472.png

我们就可以看到,从上图的t-3时刻开始,梯度已经几乎减少到0了。那么,从这个时刻开始再往之前走,得到的梯度(几乎为零)就不会对最终的梯度值有任何贡献,这就相当于无论t-3时刻之前的网络状态h是什么,在训练中都不会对权重数组W的更新产生影响,也就是网络事实上已经忽略了t-3时刻之前的状态。这就是原始RNN无法处理长距离依赖的原因。

既然找到了问题的原因,那么我们就能解决它。从问题的定位到解决,科学家们大概花了7、8年时间。终于有一天,Hochreiter和Schmidhuber两位科学家发明出长短时记忆网络,一举解决这个问题。

其实,长短时记忆网络的思路比较简单。原始RNN的隐藏层只有一个状态,即h,它对于短期的输入非常敏感。那么,假如我们再增加一个状态,即c,让它来保存长期的状态,那么问题不就解决了么?如下图所示:

2256672-71de4194da5a5ec4.png

新增加的状态c,称为单元状态(cell state)。我们把上图按照时间维度展开:

2256672-715658c134b9d6f1.png

屏幕快照 2017-03-19 18.13.59.png

2256672-bff9353b92b9c488.png

接下来,我们要描述一下,输出h和单元状态c的具体计算方法。

长短时记忆网络的前向计算
前面描述的开关是怎样在算法中实现的呢?这就用到了门(gate)的概念。门实际上就是一层全连接层,它的输入是一个向量,输出是一个0到1之间的实数向量。假设W是门的权重向量,b是偏置项,那么门可以表示为:

屏幕快照 2017-03-19 18.15.30.png

下图显示了遗忘门的计算:

2256672-c7f7ca0aa64b562f.png

接下来看看输入门:

屏幕快照 2017-03-19 18.16.16.png

2256672-89529fa23d9c8a7d.png

屏幕快照 2017-03-19 18.17.02.png

2256672-73a0246cafc1d10d.png

屏幕快照 2017-03-19 18.17.47.png

2256672-5c766f3d734334b1.png

屏幕快照 2017-03-19 18.50.24.png

2256672-fd4d91d1b68b3759.png

屏幕快照 2017-03-19 18.51.10.png

2256672-7ea82e4f1ac6cd75.png

式1到式6就是LSTM前向计算的全部公式。至此,我们就把LSTM前向计算讲完了。

长短时记忆网络的训练
熟悉我们这个系列文章的同学都清楚,训练部分往往比前向计算部分复杂多了。LSTM的前向计算都这么复杂,那么,可想而知,它的训练算法一定是非常非常复杂的。现在只有做几次深呼吸,再一头扎进公式海洋吧。

LSTM训练算法框架
LSTM的训练算法仍然是反向传播算法,对于这个算法,我们已经非常熟悉了。主要有下面三个步骤:

屏幕快照 2017-03-19 18.52.07.png

关于公式和符号的说明
首先,我们对推导中用到的一些公式、符号做一下必要的说明。

接下来的推导中,我们设定gate的激活函数为sigmoid函数,输出的激活函数为tanh函数。他们的导数分别为:

屏幕快照 2017-03-19 18.52.42.png


屏幕快照 2017-03-19 18.53.33.png

屏幕快照 2017-03-19 18.53.48.png

误差项沿时间的反向传递

屏幕快照 2017-03-19 18.54.34.png

屏幕快照 2017-03-19 18.55.11.png

屏幕快照 2017-03-19 18.55.45.png

屏幕快照 2017-03-19 18.56.12.png

将误差项传递到上一层
我们假设当前为第l层,定义l-1层的误差项是误差函数对l-1层加权输入的导数,即:

屏幕快照 2017-03-19 18.59.01.png

权重梯度的计算
屏幕快照 2017-03-19 19.05.24.png

屏幕快照 2017-03-19 19.06.12.png

屏幕快照 2017-03-19 19.06.56.png

屏幕快照 2017-03-19 19.08.54.png

以上就是LSTM的训练算法的全部公式。因为这里面存在很多重复的模式,仔细看看,会发觉并不是太复杂。

当然,LSTM存在着相当多的变体,读者可以在互联网上找到很多资料。因为大家已经熟悉了基本LSTM的算法,因此理解这些变体比较容易,因此本文就不再赘述了。

长短时记忆网络的实现
在下面的实现中,LSTMLayer的参数包括输入维度、输出维度、隐藏层维度,单元状态维度等于隐藏层维度。gate的激活函数为sigmoid函数,输出的激活函数为tanh。

激活函数的实现
我们先实现两个激活函数:sigmoid和tanh。

[mw_shl_code=python,true]class SigmoidActivator(object):
    def forward(self, weighted_input):
        return 1.0 / (1.0 + np.exp(-weighted_input))
    def backward(self, output):
        return output * (1 - output)
class TanhActivator(object):
    def forward(self, weighted_input):
        return 2.0 / (1.0 + np.exp(-2 * weighted_input)) - 1.0
    def backward(self, output):
        return 1 - output * output[/mw_shl_code]

LSTM初始化
和前两篇文章代码架构一样,我们把LSTM的实现放在LstmLayer类中。

屏幕快照 2017-03-19 19.10.37.png

在构造函数的初始化中,只初始化了与forward计算相关的变量,与backward相关的变量没有初始化。这是因为构造LSTM对象的时候,我们还不知道它未来是用于训练(既有forward又有backward)还是推理(只有forward)。

[mw_shl_code=python,true]class LstmLayer(object):
    def __init__(self, input_width, state_width,
                 learning_rate):
        self.input_width = input_width
        self.state_width = state_width
        self.learning_rate = learning_rate
        # 门的激活函数
        self.gate_activator = SigmoidActivator()
        # 输出的激活函数
        self.output_activator = TanhActivator()
        # 当前时刻初始化为t0
        self.times = 0      
        # 各个时刻的单元状态向量c
        self.c_list = self.init_state_vec()
        # 各个时刻的输出向量h
        self.h_list = self.init_state_vec()
        # 各个时刻的遗忘门f
        self.f_list = self.init_state_vec()
        # 各个时刻的输入门i
        self.i_list = self.init_state_vec()
        # 各个时刻的输出门o
        self.o_list = self.init_state_vec()
        # 各个时刻的即时状态c~
        self.ct_list = self.init_state_vec()
        # 遗忘门权重矩阵Wfh, Wfx, 偏置项bf
        self.Wfh, self.Wfx, self.bf = (
            self.init_weight_mat())
        # 输入门权重矩阵Wfh, Wfx, 偏置项bf
        self.Wih, self.Wix, self.bi = (
            self.init_weight_mat())
        # 输出门权重矩阵Wfh, Wfx, 偏置项bf
        self.Woh, self.Wox, self.bo = (
            self.init_weight_mat())
        # 单元状态权重矩阵Wfh, Wfx, 偏置项bf
        self.Wch, self.Wcx, self.bc = (
            self.init_weight_mat())
    def init_state_vec(self):
        '''
        初始化保存状态的向量
        '''
        state_vec_list = []
        state_vec_list.append(np.zeros(
            (self.state_width, 1)))
        return state_vec_list
    def init_weight_mat(self):
        '''
        初始化权重矩阵
        '''
        Wh = np.random.uniform(-1e-4, 1e-4,
            (self.state_width, self.state_width))
        Wx = np.random.uniform(-1e-4, 1e-4,
            (self.state_width, self.input_width))
        b = np.zeros((self.state_width, 1))
        return Wh, Wx, b[/mw_shl_code]

前向计算的实现
forward方法实现了LSTM的前向计算:

[mw_shl_code=python,true]def forward(self, x):
        '''
        根据式1-式6进行前向计算
        '''
        self.times += 1
        # 遗忘门
        fg = self.calc_gate(x, self.Wfx, self.Wfh,
            self.bf, self.gate_activator)
        self.f_list.append(fg)
        # 输入门
        ig = self.calc_gate(x, self.Wix, self.Wih,
            self.bi, self.gate_activator)
        self.i_list.append(ig)
        # 输出门
        og = self.calc_gate(x, self.Wox, self.Woh,
            self.bo, self.gate_activator)
        self.o_list.append(og)
        # 即时状态
        ct = self.calc_gate(x, self.Wcx, self.Wch,
            self.bc, self.output_activator)
        self.ct_list.append(ct)
        # 单元状态
        c = fg * self.c_list[self.times - 1] + ig * ct
        self.c_list.append(c)
        # 输出
        h = og * self.output_activator.forward(c)
        self.h_list.append(h)
    def calc_gate(self, x, Wx, Wh, b, activator):
        '''
        计算门
        '''
        h = self.h_list[self.times - 1] # 上次的LSTM输出
        net = np.dot(Wh, h) + np.dot(Wx, x) + b
        gate = activator.forward(net)
        return gate[/mw_shl_code]

从上面的代码我们可以看到,门的计算都是相同的算法,而门和的计算仅仅是激活函数不同。因此我们提出了calc_gate方法,这样减少了很多重复代码。

反向传播算法的实现
backward方法实现了LSTM的反向传播算法。需要注意的是,与backword相关的内部状态变量是在调用backward方法之后才初始化的。这种延迟初始化的一个好处是,如果LSTM只是用来推理,那么就不需要初始化这些变量,节省了很多内存。

[mw_shl_code=python,true]def backward(self, x, delta_h, activator):
        '''
        实现LSTM训练算法
        '''
        self.calc_delta(delta_h, activator)
        self.calc_gradient(x)[/mw_shl_code]
算法主要分成两个部分,一部分使计算误差项:
[mw_shl_code=python,true]def calc_delta(self, delta_h, activator):
        # 初始化各个时刻的误差项
        self.delta_h_list = self.init_delta()  # 输出误差项
        self.delta_o_list = self.init_delta()  # 输出门误差项
        self.delta_i_list = self.init_delta()  # 输入门误差项
        self.delta_f_list = self.init_delta()  # 遗忘门误差项
        self.delta_ct_list = self.init_delta() # 即时输出误差项
        # 保存从上一层传递下来的当前时刻的误差项
        self.delta_h_list[-1] = delta_h
        # 迭代计算每个时刻的误差项
        for k in range(self.times, 0, -1):
            self.calc_delta_k(k)
    def init_delta(self):
        '''
        初始化误差项
        '''
        delta_list = []
        for i in range(self.times + 1):
            delta_list.append(np.zeros(
                (self.state_width, 1)))
        return delta_list
    def calc_delta_k(self, k):
        '''
        根据k时刻的delta_h,计算k时刻的delta_f、
        delta_i、delta_o、delta_ct,以及k-1时刻的delta_h
        '''
        # 获得k时刻前向计算的值
        ig = self.i_list[k]
        og = self.o_list[k]
        fg = self.f_list[k]
        ct = self.ct_list[k]
        c = self.c_list[k]
        c_prev = self.c_list[k-1]
        tanh_c = self.output_activator.forward(c)
        delta_k = self.delta_h_list[k]
        # 根据式9计算delta_o
        delta_o = (delta_k * tanh_c *
            self.gate_activator.backward(og))
        delta_f = (delta_k * og *
            (1 - tanh_c * tanh_c) * c_prev *
            self.gate_activator.backward(fg))
        delta_i = (delta_k * og *
            (1 - tanh_c * tanh_c) * ct *
            self.gate_activator.backward(ig))
        delta_ct = (delta_k * og *
            (1 - tanh_c * tanh_c) * ig *
            self.output_activator.backward(ct))
        delta_h_prev = (
                np.dot(delta_o.transpose(), self.Woh) +
                np.dot(delta_i.transpose(), self.Wih) +
                np.dot(delta_f.transpose(), self.Wfh) +
                np.dot(delta_ct.transpose(), self.Wch)
            ).transpose()
        # 保存全部delta值
        self.delta_h_list[k-1] = delta_h_prev
        self.delta_f_list[k] = delta_f
        self.delta_i_list[k] = delta_i
        self.delta_o_list[k] = delta_o
        self.delta_ct_list[k] = delta_ct[/mw_shl_code]

另一部分是计算梯度:

[mw_shl_code=python,true]def calc_gradient(self, x):
        # 初始化遗忘门权重梯度矩阵和偏置项
        self.Wfh_grad, self.Wfx_grad, self.bf_grad = (
            self.init_weight_gradient_mat())
        # 初始化输入门权重梯度矩阵和偏置项
        self.Wih_grad, self.Wix_grad, self.bi_grad = (
            self.init_weight_gradient_mat())
        # 初始化输出门权重梯度矩阵和偏置项
        self.Woh_grad, self.Wox_grad, self.bo_grad = (
            self.init_weight_gradient_mat())
        # 初始化单元状态权重梯度矩阵和偏置项
        self.Wch_grad, self.Wcx_grad, self.bc_grad = (
            self.init_weight_gradient_mat())
       # 计算对上一次输出h的权重梯度
        for t in range(self.times, 0, -1):
            # 计算各个时刻的梯度
            (Wfh_grad, bf_grad,
            Wih_grad, bi_grad,
            Woh_grad, bo_grad,
            Wch_grad, bc_grad) = (
                self.calc_gradient_t(t))
            # 实际梯度是各时刻梯度之和
            self.Wfh_grad += Wfh_grad
            self.bf_grad += bf_grad
            self.Wih_grad += Wih_grad
            self.bi_grad += bi_grad
            self.Woh_grad += Woh_grad
            self.bo_grad += bo_grad
            self.Wch_grad += Wch_grad
            self.bc_grad += bc_grad
            print '-----%d-----' % t
            print Wfh_grad
            print self.Wfh_grad
        # 计算对本次输入x的权重梯度
        xt = x.transpose()
        self.Wfx_grad = np.dot(self.delta_f_list[-1], xt)
        self.Wix_grad = np.dot(self.delta_i_list[-1], xt)
        self.Wox_grad = np.dot(self.delta_o_list[-1], xt)
        self.Wcx_grad = np.dot(self.delta_ct_list[-1], xt)
    def init_weight_gradient_mat(self):
        '''
        初始化权重矩阵
        '''
        Wh_grad = np.zeros((self.state_width,
            self.state_width))
        Wx_grad = np.zeros((self.state_width,
            self.input_width))
        b_grad = np.zeros((self.state_width, 1))
        return Wh_grad, Wx_grad, b_grad
    def calc_gradient_t(self, t):
        '''
        计算每个时刻t权重的梯度
        '''
        h_prev = self.h_list[t-1].transpose()
        Wfh_grad = np.dot(self.delta_f_list[t], h_prev)
        bf_grad = self.delta_f_list[t]
        Wih_grad = np.dot(self.delta_i_list[t], h_prev)
        bi_grad = self.delta_f_list[t]
        Woh_grad = np.dot(self.delta_o_list[t], h_prev)
        bo_grad = self.delta_f_list[t]
        Wch_grad = np.dot(self.delta_ct_list[t], h_prev)
        bc_grad = self.delta_ct_list[t]
        return Wfh_grad, bf_grad, Wih_grad, bi_grad, \
               Woh_grad, bo_grad, Wch_grad, bc_grad[/mw_shl_code]

梯度下降算法的实现
下面是用梯度下降算法来更新权重:

[mw_shl_code=python,true]def update(self):
        '''
        按照梯度下降,更新权重
        '''
        self.Wfh -= self.learning_rate * self.Whf_grad
        self.Wfx -= self.learning_rate * self.Whx_grad
        self.bf -= self.learning_rate * self.bf_grad
        self.Wih -= self.learning_rate * self.Whi_grad
        self.Wix -= self.learning_rate * self.Whi_grad
        self.bi -= self.learning_rate * self.bi_grad
        self.Woh -= self.learning_rate * self.Wof_grad
        self.Wox -= self.learning_rate * self.Wox_grad
        self.bo -= self.learning_rate * self.bo_grad
        self.Wch -= self.learning_rate * self.Wcf_grad
        self.Wcx -= self.learning_rate * self.Wcx_grad
        self.bc -= self.learning_rate * self.bc_grad[/mw_shl_code]

梯度检查的实现
和RecurrentLayer一样,为了支持梯度检查,我们需要支持重置内部状态:

[mw_shl_code=python,true]    def reset_state(self):
        # 当前时刻初始化为t0
        self.times = 0      
        # 各个时刻的单元状态向量c
        self.c_list = self.init_state_vec()
        # 各个时刻的输出向量h
        self.h_list = self.init_state_vec()
        # 各个时刻的遗忘门f
        self.f_list = self.init_state_vec()
        # 各个时刻的输入门i
        self.i_list = self.init_state_vec()
        # 各个时刻的输出门o
        self.o_list = self.init_state_vec()
        # 各个时刻的即时状态c~
        self.ct_list = self.init_state_vec()[/mw_shl_code]

最后,是梯度检查的代码:

[mw_shl_code=python,true]def data_set():
    x = [np.array([[1], [2], [3]]),
         np.array([[2], [3], [4]])]
    d = np.array([[1], [2]])
    return x, d
def gradient_check():
    '''
    梯度检查
    '''
    # 设计一个误差函数,取所有节点输出项之和
    error_function = lambda o: o.sum()
    lstm = LstmLayer(3, 2, 1e-3)
    # 计算forward值
    x, d = data_set()
    lstm.forward(x[0])
    lstm.forward(x[1])
    # 求取sensitivity map
    sensitivity_array = np.ones(lstm.h_list[-1].shape,
                                dtype=np.float64)
    # 计算梯度
    lstm.backward(x[1], sensitivity_array, IdentityActivator())
    # 检查梯度
    epsilon = 10e-4
    for i in range(lstm.Wfh.shape[0]):
        for j in range(lstm.Wfh.shape[1]):
            lstm.Wfh[i,j] += epsilon
            lstm.reset_state()
            lstm.forward(x[0])
            lstm.forward(x[1])
            err1 = error_function(lstm.h_list[-1])
            lstm.Wfh[i,j] -= 2*epsilon
            lstm.reset_state()
            lstm.forward(x[0])
            lstm.forward(x[1])
            err2 = error_function(lstm.h_list[-1])
            expect_grad = (err1 - err2) / (2 * epsilon)
            lstm.Wfh[i,j] += epsilon
            print 'weights(%d,%d): expected - actural %.4e - %.4e' % (
                i, j, expect_grad, lstm.Wfh_grad[i,j])
    return lstm[/mw_shl_code]

屏幕快照 2017-03-19 19.15.44.png

2256672-cb1c4561375c22a1.png

GRU
前面我们讲了一种普通的LSTM,事实上LSTM存在很多变体,许多论文中的LSTM都或多或少的不太一样。在众多的LSTM变体中,GRU (Gated Recurrent Unit)也许是最成功的一种。它对LSTM做了很多简化,同时却保持着和LSTM相同的效果。因此,GRU最近变得越来越流行。

GRU对LSTM做了两个大改动:

屏幕快照 2017-03-19 19.17.20.png

2256672-b784d887bf693253.png


GRU的训练算法比LSTM简单一些,留给读者自行推导,本文就不再赘述了。

小结
至此,LSTM——也许是结构最复杂的一类神经网络——就讲完了,相信拿下前几篇文章的读者们搞定这篇文章也不在话下吧!现在我们已经了解循环神经网络和它最流行的变体——LSTM,它们都可以用来处理序列。但是,有时候仅仅拥有处理序列的能力还不够,还需要处理比序列更为复杂的结构(比如树结构),这时候就需要用到另外一类网络:递归神经网络(Recursive Neural Network),巧合的是,它的缩写也是RNN。在下一篇文章中,我们将介绍递归神经网络和它的训练算法。

参考资料

本帖被以下淘专辑推荐:

已有(1)人评论

跳转到指定楼层
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

推荐上一条 /2 下一条