问题导读
1.如何获取安装最新版本?
2.MLflow 0.4.2 新增了哪些功能?
3.MLflow 0.4.2修复了哪些功能?
关注最新经典文章,欢迎关注公众号
上一篇:
Spark新作MLflow 0.2发布:集成TensorFlow,Tracking Server更新和S3存储的新功能
http://www.aboutyun.com/forum.php?mod=viewthread&tid=24871
如果不知道MLflow 是什么,参考
Spark MLFlow 介绍
http://www.aboutyun.com/forum.php?mod=viewthread&tid=24862
MLflow 0.4.2已经在PyPI 有说明,相关文档也已经更新。如果按照MLflow快速入门指南中所述进行pip install mlflow,将获得最新版本。
Azure Blob存储组件(Artifact )支持
作为MLflow 0.4.0的一部分,我们通过mlflow server命令中参数-default-artifact-root添加了对Azure Blob存储中存件的支持。 这样可以轻松地在多个Azure云虚拟机上运行MLflow训练作业,并跟踪它们的结果。 以下示例显示如何使用Azure Blob存储Artifact 库启动跟踪服务器。 需要设置AZURE_STORAGE_CONNECTION_STRING环境变量,如MLflow Tracking> Azure Blob Storage中所述。
[mw_shl_code=bash,true]mlflow server --default-artifact-root wasbs://$container@$account.blob.core.windows.net/
[/mw_shl_code]
使用MLflow与PyTorch和Tensorboard
新版添加了一些包含高级跟踪的示例,包括带有以下MLflow UI和TensorBoard输出的PyTorch TensorBoard示例。[mw_shl_code=python,true]#
# Trains an MNIST digit recognizer using PyTorch, and uses tensorboardX to log training metrics
# and weights in TensorBoard event format to the MLflow run's artifact directory. This stores the
# TensorBoard events in MLflow for later access using the TensorBoard command line tool.
#
# NOTE: This example requires you to first install PyTorch (using the instructions at pytorch.org)
# and tensorboardX (using pip install tensorboardX).
#
# Code based on https://github.com/lanpa/tensorb ... ster/mnist/main.py.
#
from __future__ import print_function
import argparse
import os
import mlflow
import tempfile
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
from tensorboardX import SummaryWriter
# Command-line arguments
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=0)
def log_weights(self, step):
writer.add_histogram('weights/conv1/weight', model.conv1.weight.data, step)
writer.add_histogram('weights/conv1/bias', model.conv1.bias.data, step)
writer.add_histogram('weights/conv2/weight', model.conv2.weight.data, step)
writer.add_histogram('weights/conv2/bias', model.conv2.bias.data, step)
writer.add_histogram('weights/fc1/weight', model.fc1.weight.data, step)
writer.add_histogram('weights/fc1/bias', model.fc1.bias.data, step)
writer.add_histogram('weights/fc2/weight', model.fc2.weight.data, step)
writer.add_histogram('weights/fc2/bias', model.fc2.bias.data, step)
model = Net()
if args.cuda:
model.cuda()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
writer = None # Will be used to write TensorBoard events
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data.item()))
step = epoch * len(train_loader) + batch_idx
log_scalar('train_loss', loss.data.item(), step)
model.log_weights(step)
def test(epoch):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').data.item() # sum up batch loss
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data).cpu().sum().item()
test_loss /= len(test_loader.dataset)
test_accuracy = 100.0 * correct / len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset), test_accuracy))
step = (epoch + 1) * len(train_loader)
log_scalar('test_loss', test_loss, step)
log_scalar('test_accuracy', test_accuracy, step)
def log_scalar(name, value, step):
"""Log a scalar value to both MLflow and TensorBoard"""
writer.add_scalar(name, value, step)
mlflow.log_metric(name, value)
with mlflow.start_run():
# Log our parameters into mlflow
for key, value in vars(args).items():
mlflow.log_param(key, value)
# Create a SummaryWriter to write TensorBoard events locally
output_dir = dirpath = tempfile.mkdtemp()
writer = SummaryWriter(output_dir)
print("Writing TensorBoard events locally to %s\n" % output_dir)
# Perform the training
for epoch in range(1, args.epochs + 1):
train(epoch)
test(epoch)
# Upload the TensorBoard event logs as a run artifact
print("Uploading TensorBoard events as a run artifact...")
mlflow.log_artifacts(output_dir, artifact_path="events")
print("\nLaunch TensorBoard with:\n\ntensorboard --logdir=%s" %
os.path.join(mlflow.get_artifact_uri(), "events"))[/mw_shl_code]
H2O整合
由于PR 170,MLflow现在包括对H2O模型export 和服务的支持; 看看h2o_example.ipynb Jupyter笔记本。
其他功能和错误修复
除了这些功能外,这些版本还包含其他项目,错误和文档修复程序。 值得注意的一些项目是:
- MLflow实验REST API和mlflow实验现在创建支持提供--artifact-location(问题#232)
- [UI]在UI中显示从http(s):// GitHub URL运行的项目的GitHub链接(问题#235)
- 在向/从分布式文件系统保存/加载模型时修复Spark模型支持(问题#180)
- [跟踪] GCS工件存储现在是可插拔的依赖项(默认情况下不再安装)。 要启用GCS支持,请通过pip在客户端和跟踪服务器上安装google-cloud-storage。 (问题#202)
- [Projects]支持在Git repos的子目录中运行项目(问题#153)
- [SageMaker]支持在部署到SageMaker时指定计算规范(问题#185)
|
|