接著進行模型開發工具解壓縮:
tar zxvf GTI_SSD_model_development_kit_v1-0.tar.gz
安裝OpenCV 3:
cd ~/GTI_SSD_conversion_tool_v1-0/lightsprModelConvert/
sh install_opencv.sh
cd ~
參照廠商文件,進行 1.環境安裝 :
# 1)基礎依賴安裝:
sudo apt-get update && sudo apt-get upgrade && \
sudo apt-get install -y --no-install-recommends \
build-essential \
cmake \
git \
wget \
libatlas-base-dev \
libboost-all-dev \
libgflags-dev \
libgoogle-glog-dev \
libhdf5-serial-dev \
libleveldb-dev \
liblmdb-dev \
libprotobuf-dev \
libsnappy-dev \
protobuf-compiler \
python-pip \
python-setuptools \
python-scipy \
libopenblas-dev
# 2) python2依賴安裝
cd GTI_SSD_model_development_kit_v1-0/FilesAndInstructions/caffe-ssd/
cd python
sudo pip install --upgrade pip && \
for req in $(cat requirements.txt) pydot; do sudo pip install $req; done
# 3) CUDA(英偉達顯卡)
cd /tmp
sudo apt-get update && sudo apt-get install wget -y --no-install-recommends && \
wget "https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_8.0.61-1_amd64.deb" && \
sudo dpkg -i cuda-repo-ubuntu1604_8.0.61-1_amd64.deb && \
sudo apt-get update && \
sudo apt-get install -y cuda-8-0
wget https://developer.download.nvidi ... -linux-x64-v5.1.tgz && \
sudo tar -xzf cudnn-8.0-linux-x64-v5.1.tgz -C /usr/local && \
rm cudnn-8.0-linux-x64-v5.1.tgz && sudo ldconfig && \
cd -
# 回到Caffe原始碼目錄:
cd ~/GTI_SSD_model_development_kit_v1-0/FilesAndInstructions/caffe-ssd/ 編譯Caffe前請修改Makefile.config如下所示:
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/local/lib/python2.7/dist-packages/numpy/core/include
再進行Caffe編譯:
# 4)編譯caffe-ssd
make clean
make all
make pycaffe
接著進行 2.模型訓練:
# 1)數據準備
cd ~
tar zxvf GTI_SSD_DataSets_v1-0.tar.gz
# 進入"多目標檢測"專案目錄:
cd ~/GTI_SSD_model_development_kit_v1-0/FilesAndInstructions/ssd_typ_mdk/
訓練前請修改run_ssd_training.sh如下所示:
$TOOLS/caffe train \
--solver=$slovertxttyp \
--weights=$ssd \
--gpu 0 2>&1 | tee $LOG $@
完成後執行run_ssd_training.sh進行訓練(執行時間很久):
source run_ssd_training.sh
訓練完成後,進行 3.模型轉換 :
cd ~/GTI_SSD_conversion_tool_v1-0/lightsprModelConvert/
source setting_caffe.sh
將生成的模型放入inputs/SSD_typ並命名為SSD_typ_quant.caffemodel後進行轉換:
make SSD_typ_vgg
make SSD_typ_ssd
轉換完成後,進行 4.模型使用:
cd ~
tar zxvf Gti2801_SSD_sample_v1-0.tar.gz
cp ~/GTI_SSD_conversion_tool_v1-0/lightsprModelConvert/cnn_weights_SSD_typ/vgg.dat ~/Gti2801_SSD_sample_v1-0/Data/Models/gti2801/multi-object
cp ~/GTI_SSD_conversion_tool_v1-0/lightsprModelConvert/cnn_weights_SSD_typ/ssd.bin ~/Gti2801_SSD_sample_v1-0/Data/Models/gti2801/multi-object
修改Gti2801_SSD_sample_v1-0/Data/Models/gti2801/userinput.txt,如下所示:
{
"Gti device type": 0, # 0: GTI 2801, 1: GTI 2803
"model": [
{
"Network name": "Gnet1",
"Image output format": 0, # 0: Conv out pooling, 1: Sub layers, 2: Conv out, 3: Major layers
"Dump input image": 0,
"USB write block numbers": 2048, # eMMC USB dongle block numbers for one write or read command, 2048 for best performance, 128 for USB 2.0 compatibility
"USB read delay": 15000, # Delay time (us) between eMMC USB dongle write and read commands, 4000 for gNet3, 12000 for gNet1
"USB device node": "/dev/sg1", # The first available eMMC device node, find the node name from folder /dev/ after dongle is plugged in
}
]
}
完成後編譯與執行展示程式:
cd ~/Gti2801_SSD_sample_v1-0/Sample/Linux/
cp Makefile_x86 Makefile
make
sudo chmod 777 /dev/sg1
./ssdSample -dev_id /dev/sg1
執行結果如下所示:
至此,就完成在USB神经网络计算卡上进行目标检测SSD算法推论之验证。