本帖最后由 BGnv5 于 2019-6-30 09:55 编辑
问题导读:
1.调节资源以后,性能为什么会提升?
2.如何设置一个Spark Application的并行度?
3.Spark中应用fastutil的场景包括哪些?
4.JVM原理是什么?
5.shuffle的原理是什么?
6.SortShuffleManager与HashShuffleManager的差别是什么?
7.MapPartitions操作的优缺点是什么?
8.如何解决JVM GC导致的shuffle文件拉去失败问题?
9.如何解决数据倾斜的问题?
一、性能调优
1、分配资源
a、在我们在生产环境中,提交spark作业时,用的spark-submit shell脚本,里面调整对应的参数
/usr/local/spark/bin/spark-submit \
--class cn.spark.sparktest.core.WordCountCluster \
--num-executors 3 \ 配置executor的数量
--driver-memory 100m \ 配置driver的内存(影响不大)
--executor-memory 100m \ 配置每个executor的内存大小
--executor-cores 3 \ 配置每个executor的cpu core数量
/usr/local/SparkTest-0.0.1-SNAPSHOT-jar-with-dependencies.jar \
b、调节到多大,算是最大呢?
第一种,Spark Standalone(Spark集群),你心里应该清楚每台机器还能够给你使用的,大概有多少内存,多少cpu core;那么,设置的时候,就根据这个实际的情况,去调节每个spark作业的资源分配。比如说你的每台机器能够给你使用4G内存,2个cpu core;20台机器;executor,20;4G内存,2个cpu core,平均每个executor。
第二种,Yarn。资源队列。资源调度。应该去查看,你的spark作业,要提交到的资源队列,大概有多少资源?500G内存,100个cpu core;executor,50;10G内存,2个cpu core,平均每个executor。
c、调节资源以后,性能为什么会提升?
2、提高spark运行的并行度
并行度:其实就是指的是,Spark作业中,各个stage的task数量,也就代表了Spark作业的在各个阶段(stage)的并行度。
很简单的道理,只要合理设置并行度,就可以完全充分利用你的集群计算资源,并且减少每个task要处理的数据量,最终,就是提升你的整个Spark作业的性能和运行速度。
a、task数量,至少设置成与Spark application的总cpu core数量相同(最理想情况,比如总共150个cpu core,分配了150个task,一起运行,差不多同一时间运行完毕)
b、官方是推荐,task数量,设置成spark application总cpu core数量的2~3倍,比如150个cpu core,基本要设置task数量为300~500;
实际情况,与理想情况不同的,有些task会运行的快一点,比如50s就完了,有些task,可能会慢一点,要1分半才运行完,所以如果你的task数量,刚好设置的跟cpu core数量相同,可能还是会导致资源的浪费,因为,比如150个task,10个先运行完了,剩余140个还在运行,但是这个时候,有10个cpu core就空闲出来了,就导致了浪费。那如果task数量设置成cpu core总数的2~3倍,那么一个task运行完了以后,另一个task马上可以补上来,就尽量让cpu core不要空闲,同时也是尽量提升spark作业运行的效率和速度,提升性能。
c、如何设置一个Spark Application的并行度?
spark.default.parallelism
SparkConf conf = new SparkConf()
.set("spark.default.parallelism", "500") // 即设置task的数量
3、重构RDD架构以及RDD持久化
a、RDD架构重构与优化:
尽量去复用RDD,差不多的RDD,可以抽取称为一个共同的RDD,供后面的RDD计算时,反复使用。
b、公共RDD一定要实现持久化
对于要多次计算和使用的公共RDD,一定要进行持久化。
持久化:即将RDD的数据缓存到内存中/磁盘中,(BlockManager),以后无论对这个RDD做多少次计算,那么都是直接取这个RDD的持久化的数据,比如从内存中或者磁盘中,直接提取一份数据。
c、持久化,是可以进行序列化的
如果正常将数据持久化在内存中,那么可能会导致内存的占用过大,这样的话,也许,会导致OOM内存溢出。当纯内存无法支撑公共RDD数据完全存放的时候,就优先考虑,使用序列化的方式在纯内存中存储。将RDD的每个partition的数据,序列化成一个大的字节数组,就一个对象;序列化后,大大减少内存的空间占用。
序列化的方式,唯一的缺点就是,在获取数据的时候,需要反序列化。
如果序列化纯内存方式,还是导致OOM,内存溢出;就只能考虑磁盘的方式,内存+磁盘的普通方式(无序列化)。
内存+磁盘(序列化)。
d、为了数据的高可靠性,而且内存充足,可以使用双副本机制,进行持久化
持久化的双副本机制,持久化后的一个副本,因为机器宕机了,副本丢了,就还是得重新计算一次;持久化的每个数据单元,存储一份副本,放在其他节点上面;从而进行容错;一个副本丢了,不用重新计算,还可以使用另外一份副本。
这种方式,仅仅针对你的内存资源极度充足。
4、使用广播变量
若不用广播变量,默认情况下task执行的算子中,使用了外部的变量,每个task都会获取一份变量的副本。
map,本身是不小,存放数据的一个单位是Entry,还有可能会用链表的格式的来存放Entry链条。所以map是比较消耗内存的数据格式。
比如,map是1M。总共,你前面调优都调的特好,资源给的到位,配合着资源,并行度调节的绝对到位,1000个task。大量task的确都在并行运行。
这些task里面都用到了占用1M内存的map,那么首先,map会拷贝1000份副本,通过网络传输到各个task中去,给task使用。总计有1G的数据,会通过网络传输。网络传输的开销,不容乐观啊!!!网络传输,也许就会消耗掉你的spark作业运行的总时间的一小部分。
map副本,传输到了各个task上之后,是要占用内存的。1个map的确不大,1M;1000个map分布在你的集群中,一下子就耗费掉1G的内存。对性能会有什么影响呢?
不必要的内存的消耗和占用,就导致了,你在进行RDD持久化到内存,也许就没法完全在内存中放下;就只能写入磁盘,最后导致后续的操作在磁盘IO上消耗性能;
你的task在创建对象的时候,也许会发现堆内存放不下所有对象,也许就会导致频繁的垃圾回收器的回收,GC。GC的时候,一定是会导致工作线程停止,也就是导致Spark暂停工作那么一点时间。频繁GC的话,对Spark作业的运行的速度会有相当可观的影响。
广播变量:初始的时候,就在Drvier上有一份副本。(不是每个task一份变量副本,而是变成每个节点的executor才一份副本。这样的话,就可以让变量产生的副本大大减少。)
task在运行的时候,想要使用广播变量中的数据,此时首先会在自己本地的Executor对应的BlockManager中,尝试获取变量副本;如果本地没有,那么就从Driver远程拉取变量副本,并保存在本地的BlockManager中;此后这个executor上的task,都会直接使用本地的BlockManager中的副本。
executor的BlockManager除了从driver上拉取,也可能从其他节点的BlockManager上拉取变量副本,举例越近越好。
5、使用Kryo序列化
set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
算子函数中用到了外部变量,会序列化,使用Kryo
Spark默认情况下,Spark内部是使用Java的序列化机制,ObjectOutputStream / ObjectInputStream,对象输入输出流机制,来进行序列化
这种默认序列化机制的好处在于,处理起来比较方便;也不需要我们手动去做什么事情,只是,你在算子里面使用的变量,必须是实现Serializable接口的,可序列化即可。
但是缺点在于,默认的序列化机制的效率不高,序列化的速度比较慢;序列化以后的数据,占用的内存空间相对还是比较大。
可以手动进行序列化格式的优化。
Spark支持使用Kryo序列化机制。Kryo序列化机制,比默认的Java序列化机制,速度要快,序列化后的数据要更小,大概是Java序列化机制的1/10。
所以Kryo序列化优化以后,可以让网络传输的数据变少;在集群中耗费的内存资源大大减少。
Kryo序列化机制,一旦启用以后,会生效的地方:
1、算子函数中使用到的外部变量
2、持久化RDD时进行序列化,StorageLevel.MEMORY_ONLY_SER
3、Shuffle (在进行stage间的task的shuffle操作时,节点与节点之间的task会互相大量通过网络拉取和传输文件,此时,这些数据既然通过网络传输,也是可能要序列化的,就会使用Kryo)
优化的地方:
1、算子函数中使用到的外部变量,使用Kryo以后:优化网络传输的性能,可以优化集群中内存的占用和消耗
2、持久化RDD,优化内存的占用和消耗;持久化RDD占用的内存越少,task执行的时候,创建的对象,就不至于频繁的占满内存,频繁发生GC。
3、shuffle:可以优化网络传输的性能
Kryo序列化的使用
SparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
首先第一步,在SparkConf中设置一个属性,spark.serializer,org.apache.spark.serializer.KryoSerializer类;
Kryo之所以没有被作为默认的序列化类库的原因,就要出现了:主要是因为Kryo要求,如果要达到它的最佳性能的话,那么就一定要注册你自定义的类(比如,你的算子函数中使用到了外部自定义类型的对象变量,这时,就要求必须注册你的类,否则Kryo达不到最佳性能)。
第二步,注册你使用到的,需要通过Kryo序列化的,一些自定义类,SparkConf.registerKryoClasses()
项目中的使用:
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.registerKryoClasses(new Class[]{CategorySortKey.class})
6、使用fastutil集合
a、fastutil介绍:
fastutil是扩展了Java标准集合框架(Map、List、Set;HashMap、ArrayList、HashSet)的类库,提供了特殊类型的map、set、list和queue;
fastutil能够提供更小的内存占用,更快的存取速度;我们使用fastutil提供的集合类,来替代自己平时使用的JDK的原生的Map、List、Set,好处在于,fastutil集合类,可以减小内存的占用,并且在进行集合的遍历、根据索引(或者key)获取元素的值和设置元素的值的时候,提供更快的存取速度;
fastutil也提供了64位的array、set和list,以及高性能快速的,以及实用的IO类,来处理二进制和文本类型的文件;
fastutil最新版本要求Java 7以及以上版本;
fastutil的每一种集合类型,都实现了对应的Java中的标准接口(比如fastutil的map,实现了Java的Map接口),因此可以直接放入已有系统的任何代码中。
fastutil还提供了一些JDK标准类库中没有的额外功能(比如双向迭代器)。
fastutil除了对象和原始类型为元素的集合,fastutil也提供引用类型的支持,但是对引用类型是使用等于号(=)进行比较的,而不是equals()方法。
fastutil尽量提供了在任何场景下都是速度最快的集合类库。
b、Spark中应用fastutil的场景:
1、如果算子函数使用了外部变量;那么第一,你可以使用Broadcast广播变量优化;第二,可以使用Kryo序列化类库,提升序列化性能和效率;第三,如果外部变量是某种比较大的集合,那么可以考虑使用fastutil改写外部变量,首先从源头上就减少内存的占用,通过广播变量进一步减少内存占用,再通过Kryo序列化类库进一步减少内存占用。
2、在你的算子函数里,也就是task要执行的计算逻辑里面,如果有逻辑中,出现,要创建比较大的Map、List等集合,可能会占用较大的内存空间,而且可能涉及到消耗性能的遍历、存取等集合操作;那么此时,可以考虑将这些集合类型使用fastutil类库重写,使用了fastutil集合类以后,就可以在一定程度上,减少task创建出来的集合类型的内存占用。避免executor内存频繁占满,频繁唤起GC,导致性能下降。
c、fastutil的使用:
第一步:在pom.xml中引用fastutil的包
<dependency>
<groupId>fastutil</groupId>
<artifactId>fastutil</artifactId>
<version>5.0.9</version>
</dependency>
List<Integer> => IntList
7、调节数据本地化等待时长(s)
PROCESS_LOCAL:进程本地化,代码和数据在同一个进程中,也就是在同一个executor中;计算数据的task由executor执行,数据在executor的BlockManager中;性能最好。
NODE_LOCAL:节点本地化,代码和数据在同一个节点中;比如说,数据作为一个HDFS block块,就在节点上,而task在节点上某个executor中运行;或者是,数据和task在一个节点上的不同executor中;数据需要在进程间进行传输。
NO_PREF:对于task来说,数据从哪里获取都一样,没有好坏之分。
RACK_LOCAL:机架本地化,数据和task在一个机架的两个节点上;数据需要通过网络在节点之间进行传输。
ANY:数据和task可能在集群中的任何地方,而且不在一个机架中,性能最差。
spark.locality.wait,默认是3s
a、介绍
Spark在Driver上,对Application的每一个stage的task,进行分配之前,都会计算出每个task要计算的是哪个分片数据,RDD的某个partition;Spark的task分配算法,优先,会希望每个task正好分配到它要计算的数据所在的节点,这样的话,就不用在网络间传输数据;
但是呢,通常来说,有时,事与愿违,可能task没有机会分配到它的数据所在的节点,为什么呢,可能那个节点的计算资源和计算能力都满了;所以呢,这种时候,通常来说,Spark会等待一段时间,默认情况下是3s钟(不是绝对的,还有很多种情况,对不同的本地化级别,都会去等待),到最后,实在是等待不了了,就会选择一个比较差的本地化级别,比如说,将task分配到靠它要计算的数据所在节点,比较近的一个节点,然后进行计算。
但是对于第二种情况,通常来说,肯定是要发生数据传输,task会通过其所在节点的BlockManager来获取数据,BlockManager发现自己本地没有数据,会通过一个getRemote()方法,通过TransferService(网络数据传输组件)从数据所在节点的BlockManager中,获取数据,通过网络传输回task所在节点。
对于我们来说,当然不希望是类似于第二种情况的了。最好的,当然是task和数据在一个节点上,直接从本地executor的BlockManager中获取数据,纯内存,或者带一点磁盘IO;如果要通过网络传输数据的话,那么实在是,性能肯定会下降的,大量网络传输,以及磁盘IO,都是性能的杀手。
b、如何调节参数
观察日志:spark作业的运行日志,推荐大家在测试的时候,先用client模式,在本地就直接可以看到比较全的日志。
日志里面会显示,starting task。。。,PROCESS LOCAL、NODE LOCAL
观察大部分task的数据本地化级别
如果大多都是PROCESS_LOCAL,那就不用调节了
如果是发现,好多的级别都是NODE_LOCAL、ANY,那么最好就去调节一下数据本地化的等待时长。调节完,应该是要反复调节,每次调节完以后,再来运行,观察日志看看大部分的task的本地化级别有没有提升;看看,整个spark作业的运行时间有没有缩短。
你别本末倒置,本地化级别倒是提升了,但是因为大量的等待时长,spark作业的运行时间反而增加了,那就还是不要调节了
参数调节:
spark.locality.wait,默认是3s;6s,10s
默认情况下,下面3个的等待时长,都是跟上面那个是一样的,都是3s
spark.locality.wait.process
spark.locality.wait.node
spark.locality.wait.rack
将进程本地化的等待时间设置长一些
new SparkConf().set("spark.locality.wait", "10")
二、JVM调优
1、JVM调优:降低cache操作的内存占比
a、JVM原理介绍:
每一次放对象的时候,都是放入eden区域,和其中一个survivor区域;另外一个survivor区域是空闲的。
当eden区域和一个survivor区域放满了以后(spark运行过程中,产生的对象实在太多了),就会触发minor gc,小型垃圾回收。把不再使用的对象,从内存中清空,给后面新创建的对象腾出来点儿地方。
清理掉了不再使用的对象之后,那么也会将存活下来的对象(还要继续使用的),放入之前空闲的那一个survivor区域中。这里可能会出现一个问题。默认eden、survior1和survivor2的内存占比是8:1:1。问题是,如果存活下来的对象是1.5,一个survivor区域放不下。此时就可能通过JVM的担保机制(不同JVM版本可能对应的行为),将多余的对象,直接放入老年代了。
如果你的JVM内存不够大的话,可能导致频繁的年轻代内存满溢,频繁的进行minor gc。频繁的minor gc会导致短时间内,有些存活的对象,多次垃圾回收都没有回收掉。会导致这种短声明周期(其实不一定是要长期使用的)对象,年龄过大,垃圾回收次数太多还没有回收到,跑到老年代。
老年代中,可能会因为内存不足,囤积一大堆,短生命周期的,本来应该在年轻代中的,可能马上就要被回收掉的对象。此时,可能导致老年代频繁满溢。频繁进行full gc(全局/全面垃圾回收)。full gc就会去回收老年代中的对象。full gc由于这个算法的设计,是针对的是,老年代中的对象数量很少,满溢进行full gc的频率应该很少,因此采取了不太复杂,但是耗费性能和时间的垃圾回收算法。full gc很慢。
full gc / minor gc,无论是快,还是慢,都会导致jvm的工作线程停止工作,stop the world。简而言之,就是说,gc的时候,spark停止工作了。等着垃圾回收结束。
内存不充足的时候,问题:
1、频繁minor gc,也会导致频繁spark停止工作
2、老年代囤积大量活跃对象(短生命周期的对象),导致频繁full gc,full gc时间很长,短则数十秒,长则数分钟,甚至数小时。可能导致spark长时间停止工作。
3、严重影响咱们的spark的性能和运行的速度。
b、 JVM调优的第一个点:降低cache操作的内存占比
- spark中,堆内存又被划分成了两块儿,一块儿是专门用来给RDD的cache、persist操作进行RDD数据缓存用的;另外一块儿,就是我们刚才所说的,用来给spark算子函数的运行使用的,存放函数中自己创建的对象。
- 默认情况下,给RDD cache操作的内存占比,是0.6,60%的内存都给了cache操作了。但是问题是,如果某些情况下,cache不是那么的紧张,问题在于task算子函数中创建的对象过多,然后内存又不太大,导致了频繁的minor gc,甚至频繁full gc,导致spark频繁的停止工作。性能影响会很大
- 针对上述这种情况,大家可以在之前我们讲过的那个spark ui。yarn去运行的话,那么就通过yarn的界面,去查看你的spark作业的运行统计,很简单,大家一层一层点击进去就好。可以看到每个stage的运行情况,包括每个task的运行时间、gc时间等等。如果发现gc太频繁,时间太长。此时就可以适当调价这个比例。
- 降低cache操作的内存占比,大不了用persist操作,选择将一部分缓存的RDD数据写入磁盘,或者序列化方式,配合Kryo序列化类,减少RDD缓存的内存占用;降低cache操作内存占比;对应的,算子函数的内存占比就提升了。这个时候,可能,就可以减少minor gc的频率,同时减少full gc的频率。对性能的提升是有一定的帮助的。一句话,让task执行算子函数时,有更多的内存可以使用。
- spark.storage.memoryFraction,0.6 -> 0.5 -> 0.4 -> 0.2 (降低cache的占比)
2、JVM调优:executor堆外内存与连接等待时长
[mw_shl_code=java,true]/usr/local/spark/bin/spark-submit \
--class com.ibeifeng.sparkstudy.WordCount \
--num-executors 80 \
--driver-memory 6g \
--executor-memory 6g \
--executor-cores 3 \
--master yarn-cluster \
--queue root.default \
--conf spark.yarn.executor.memoryOverhead=2048 \ //增加堆外内存至2G【这个是yarn的,不带yarn是standalone】
--conf spark.core.connection.ack.wait.timeout=300 \ //连接等待时长至300s
/usr/local/spark/spark.jar \[/mw_shl_code]
a、executor堆外内存介绍
有时候,如果你的spark作业处理的数据量特别特别大,几亿数据量;然后spark作业一运行,时不时的报错,shuffle file cannot find,executor、task lost,out of memory(内存溢出);
可能是说executor的堆外内存不太够用,导致executor在运行的过程中,可能会内存溢出;然后可能导致后续的stage的task在运行的时候,可能要从一些executor中去拉取shuffle map output文件,但是executor可能已经挂掉了,关联的block manager也没有了;所以可能会报shuffle output file not found;resubmitting task;executor lost;spark作业彻底崩溃。
上述情况下,就可以去考虑调节一下executor的堆外内存。也许就可以避免报错;此外,有时,堆外内存调节的比较大的时候,对于性能来说,也会带来一定的提升。
b、报错原因分析
如果此时,stage0的executor挂了,block manager也没有了;此时,stage1的executor的task,虽然通过Driver的MapOutputTrakcer获取到了自己数据的地址;但是实际上去找对方的block manager获取数据的时候,是获取不到的
此时,就会在spark-submit运行作业(jar),client(standalone client、yarn client),在本机就会打印出log
shuffle output file not found…
DAGScheduler,resubmitting task,一直会挂掉。反复挂掉几次,反复报错几次
整个spark作业就崩溃了。
c、增加executor堆外内存
--conf spark.yarn.executor.memoryOverhead=2048
spark-submit脚本里面,去用--conf的方式,去添加配置;一定要注意!!!切记,不是在你的spark作业代码中,用new SparkConf().set()这种方式去设置,不要这样去设置,是没有用的!一定要在spark-submit脚本中去设置。
spark.yarn.executor.memoryOverhead(看名字,顾名思义,针对的是基于yarn的提交模式)
默认情况下,这个堆外内存上限大概是300多M;后来我们通常项目中,真正处理大数据的时候,这里都会出现问题,导致spark作业反复崩溃,无法运行;此时就会去调节这个参数,到至少1G(1024M),甚至说2G、4G
通常这个参数调节上去以后,就会避免掉某些JVM OOM的异常问题,同时呢,会让整体spark作业的性能,得到较大的提升。
d、增加连接等待时长
JVM调优:处于垃圾回收过程中,所有的工作线程全部停止;相当于只要一旦进行垃圾回收,spark / executor停止工作,无法提供响应。
垃圾回收过程中去建立连接,就会没有响应,无法建立网络连接;会卡住。 spark默认的网络连接的超时时长,是60s;如果卡住60s都无法建立连接的话,那么就宣告失败了。
碰到一种情况,偶尔,偶尔,偶尔!!!没有规律!!!某某file。一串file id。uuid(dsfsfd-2342vs--sdf--sdfsd)。not found。file lost。
这种情况下,很有可能是有那份数据的executor在jvm gc。所以拉取数据的时候,建立不了连接。然后超过默认60s以后,直接宣告失败。
报错几次,几次都拉取不到数据的话,可能会导致spark作业的崩溃。也可能会导致DAGScheduler,反复提交几次stage。TaskScheduler,反复提交几次task。大大延长我们的spark作业的运行时间。
此时可以考虑调节连接的超时时长。
--conf spark.core.connection.ack.wait.timeout=300
spark-submit脚本,切记!!!不是在new SparkConf().set()这种方式来设置的。
spark.core.connection.ack.wait.timeout(spark core,connection,连接,ack,wait timeout,建立不上连接的时候,超时等待时长)
调节这个值比较大以后,通常来说,可以避免部分的偶尔出现的某某文件拉取失败,某某文件lost掉了…因为比较实用,在真正处理大数据(不是几千万数据量、几百万数据量),几亿,几十亿,几百亿的时候。很容易碰到executor堆外内存,以及gc引起的连接超时的问题。file not found,executor lost,task lost。调节上面两个参数,还是很有帮助的。
三、shuffle性能调优
1、shuffle的原理
在spark中,发生shuffle操作主要是以下几个算子:groupByKey、reduceByKey、countByKey、join,等等。
Shuffle原理介绍:
groupByKey,要把分布在集群各个节点上的数据中的同一个key,对应的values,都给集中到一块儿,集中到集群中同一个节点上,更严密一点说,就是集中到一个节点的一个executor的一个task中。然后呢,集中一个key对应的values之后,才能交给我们来进行处理,<key, Iterable<value>>;
reduceByKey,算子函数去对values集合进行reduce操作,最后变成一个value;
countByKey,需要在一个task中,获取到一个key对应的所有的value,然后进行计数,统计总共有多少个value;
join,RDD<key, value>,RDD<key, value>,只要是两个RDD中,key相同对应的2个value,都能到一个节点的executor的task中,给我们进行处理。
Shuffle,一定是分为两个stage来完成的。因为这其实是个逆向的过程,不是stage决定shuffle,是shuffle决定stage。
reduceByKey(_+_),在某个action触发job的时候,DAGScheduler,会负责将job划分为多个stage。划分的依据,就是,如果发现有会触发shuffle操作的算子,比如reduceByKey,就将这个操作的前半部分,以及之前所有的RDD和transformation操作,划分为一个stage;shuffle操作的后半部分,以及后面的,直到action为止的RDD和transformation操作,划分为另外一个stage。
每一个shuffle的前半部分stage的task,每个task都会创建下一个stage的task数量相同的文件,比如下一个stage会有100个task,那么当前stage每个task都会创建100份文件;会将同一个key对应的values,一定是写入同一个文件中的;不同节点上的task,也一定会将同一个key对应的values,写入下一个stage,同一个task对应的文件中。
shuffle的后半部分stage的task,每个task都会从各个节点上的task写的属于自己的那一份文件中,拉取key, value对;然后task会有一个内存缓冲区,然后会用HashMap,进行key, values的汇聚;(key ,values);
task会用我们自己定义的聚合函数,比如reduceByKey(_+_),把所有values进行一对一的累加;聚合出来最终的值。就完成了shuffle。
shuffle前半部分的task在写入数据到磁盘文件之前,都会先写入一个一个的内存缓冲,内存缓冲满溢之后,再spill溢写到磁盘文件中。
Shuffle过程:
第一个stage,每个task,都会给第二个stage的每个task创建一份map端的输出文件。
第二个stage,每个task,会到各个节点上面去,拉取第一个stage每个task输出的,属于自己的那一份文件。
默认的这种shuffle行为,对性能有什么样的恶劣影响呢?
实际生产环境的条件:(每一个task会创建下一个stage的task数量的文件,例子中的stage并行度为1000)
100个节点(每个节点一个executor):100个executor
每个executor:2个cpu core
总共1000个task:每个executor平均10个task
每个节点,10个task,每个节点会输出多少份map端文件?
单节点输出:10 * 1000=1万个文件
总共有多少份map端输出文件?
总节点输出:100 * 10000 = 100万个文件
分析:
shuffle中的写磁盘的操作,基本上就是shuffle中性能消耗最为严重的部分。一个普通的生产环境的spark job的一个shuffle环节,会写入磁盘100万个文件。磁盘IO对性能和spark作业执行速度的影响,是极其惊人和吓人的。
2、shuffle调优之合并map端输出文件
new SparkConf().set("spark.shuffle.consolidateFiles", "true")
开启shuffle map端输出文件合并的机制;默认情况下,是不开启的,就是会发生如上所述的大量map端输出文件的操作,严重影响性能。
开启了map端输出文件的合并机制之后:
第一个stage,同时就运行cpu core个task,比如cpu core是2个,并行运行2个task;每个task都创建下一个stage的task数量个文件;
第一个stage,并行运行的2个task执行完以后;就会执行另外两个task;另外2个task不会再重新创建输出文件;而是复用之前的task创建的map端输出文件,将数据写入上一批task的输出文件中。
第二个stage,task在拉取数据的时候,就不会去拉取上一个stage每一个task为自己创建的那份输出文件了;而是拉取少量的输出文件,每个输出文件中,可能包含了多个task给自己的map端输出。
开启了map端输出文件合并机制之后,生产环境上的例子,会有什么样的变化?
实际生产环境的条件:
100个节点(每个节点一个executor):100个executor
每个executor:2个cpu core
总共1000个task:每个executor平均10个task
//上一个stage的每一个task会创建生成下一个stage的并行度task数的文件
每个节点,2个cpu core,有多少份输出文件呢?2 * 1000 = 2000个(文件复用生效,创建文件嫌少了,原来是总共创建10个)
总共100个节点,总共创建多少份输出文件呢?100 * 2000 = 20万个文件
相比较开启合并机制之前的情况,100万个
map端输出文件,在生产环境中,立减5倍!
合并map端输出文件,对咱们的spark的性能有哪些方面的影响呢?
1、map task写入磁盘文件的IO,减少:100万文件 -> 20万文件
2、第二个stage,原本要拉取第一个stage的task数量份文件,即1000个task,第二个stage的每个task,都要拉取1000份文件,走网络传输;合并以后,100个节点,每个节点2个cpu core,第二个stage的每个task,主要拉取100 * 2 = 200份文件即可;网络传输的性能消耗是不是也大大减少
3、分享一下,实际在生产环境中,使用了spark.shuffle.consolidateFiles机制以后,实际的性能调优的效果:对于上述的这种生产环境的配置,性能的提升,还是相当的客观的。spark作业,5个小时 -> 2~3个小时。
3、shuffle调优之map端内存缓存与reduce端内存占比
spark.shuffle.file.buffer,默认32k
spark.shuffle.memoryFraction,0.2
默认,map端内存缓冲是每个task,32kb。
默认,reduce端聚合内存比例,是0.2,也就是20%。
默认情况下,shuffle的map task,输出到磁盘文件的时候,统一都会先写入每个task自己关联的一个内存缓冲区。这个缓冲区大小,默认是32kb。每一次,当内存缓冲区满溢之后,才会进行spill操作,溢写操作,溢写到磁盘文件中去。
如果map端的task,处理的数据量比较大,可能会出现什么样的情况?
每个task就处理320kb,32kb,总共会向磁盘溢写320 / 32 = 10次。
每个task处理32000kb,32kb,总共会向磁盘溢写32000 / 32 = 1000次。
在map task处理的数据量比较大的情况下,而你的task的内存缓冲默认是比较小的,32kb。可能会造成多次的map端往磁盘文件的spill溢写操作,发生大量的磁盘IO,从而降低性能。
如果数据量比较大,reduce端聚合时可能会出现什么样的情况?
reduce端聚合内存,占比。默认是0.2。如果数据量比较大,reduce task拉取过来的数据很多,那么就会频繁发生reduce端聚合内存不够用,频繁发生spill操作,溢写到磁盘上去。而且最要命的是,磁盘上溢写的数据量越大,后面在进行聚合操作的时候,很可能会多次读取磁盘中的数据,进行聚合。默认不调优,在数据量比较大的情况下,可能频繁地发生reduce端的磁盘文件的读写。
生产调优过程:
在实际生产环境中,我们在什么时候来调节两个参数?
看Spark UI,如果是standalone模式,通过Spark UI的地址,4040的端口,进去看,依次点击进去,可以看到每个stage的详情,有哪些executor,有哪些task,每个task的shuffle write和shuffle read的量,shuffle的磁盘和内存,读写的数据量;如果是yarn模式来提交,课程最前面,从yarn的界面进去,点击对应的application,进入Spark UI,查看详情。
如果发现shuffle 磁盘的write和read很大。这个时候,就意味着最好调节一些shuffle的参数。进行调优。首先当然是考虑开启map端输出文件合并机制。
调节上面说的那两个参数。调节的时候的原则。spark.shuffle.file.buffer,每次扩大一倍,然后看看效果,64,128;spark.shuffle.memoryFraction,每次提高0.1,看看效果。
调节了以后,map task内存缓冲变大了,减少spill到磁盘文件的次数;reduce端聚合内存变大了,减少spill到磁盘的次数,而且减少了后面聚合读取磁盘文件的数量。(不能调节的太大)
4、shuffle调优之HashShuffleManager与SortShuffleManager
spark.shuffle.manager:hash、sort、tungsten-sort(自己实现内存管理)
spark.shuffle.sort.bypassMergeThreshold:200 (输出文件小于等于200的;最后只会将所有的输出文件合并为一份文件,并不会进行sort操作)
SortShuffleManager与HashShuffleManager两点不同:
1、SortShuffleManager会对每个reduce task要处理的数据,进行排序(默认的)。
2、SortShuffleManager会避免像HashShuffleManager那样,不会去创建多份磁盘文件。一个task,只会写入一个磁盘文件,不同reduce task的数据,用offset来划分界定。
3、自己可以设定一个阈值,默认是200,当reduce task数量少于等于200;map task创建的输出文件小于等于200的;最后只会将所有的输出文件合并为一份文件,并不会进行sort操作。这样做的好处,就是避免了sort排序,节省了性能开销。而且还能将多个reduce task的文件合并成一份文件。节省了reduce task拉取数据的时候的磁盘IO的开销。
钨丝sort shuffle manager,效果跟sort shuffle manager是差不多的。
但是,唯一的不同之处在于,钨丝manager,是使用了自己实现的一套内存管理机制,性能上有很大的提升, 而且可以避免shuffle过程中产生的大量的OOM,GC,等等内存相关的异常。
hash、sort、tungsten-sort。如何来选择?
1、需不需要数据默认就让spark给你进行排序?就好像mapreduce,默认就是有按照key的排序。如果不需要的话,其实还是建议搭建就使用最基本的HashShuffleManager,因为最开始就是考虑的是不排序,换取高性能;
2、什么时候需要用sort shuffle manager?如果你需要你的那些数据按key排序了,那么就选择这种吧,而且要注意,reduce task的数量应该是超过200的,这样sort、merge(多个文件合并成一个)的机制,才能生效把(否则reduce task的数量少于等于200,只会将多个文件合并成一个,而不会进行sort操作)。但是这里要注意,你一定要自己考量一下,有没有必要在shuffle的过程中,就做这个事情,毕竟对性能是有影响的。
spark.shuffle.manager:hash、sort(默认就是)、tungsten-sort
new SparkConf().set("spark.shuffle.manager", "hash")
new SparkConf().set("spark.shuffle.manager", "tungsten-sort")
// 默认就是
new SparkConf().set("spark.shuffle.manager", "sort")
new SparkConf().set("spark.shuffle.sort.bypassMergeThreshold", "550")
四、算子调优
1、MapPartitions提升Map类操作性能
MapPartitions操作的优点:
如果是普通的map,比如一个partition中有1万条数据;ok,那么你的function要执行和计算1万次。但是,使用MapPartitions操作之后,一个task仅仅会执行一次function,function一次接收所有的partition数据。只要执行一次就可以了,性能比较高。
MapPartitions操作的缺点:
如果是普通的map操作,一次function的执行就处理一条数据;那么如果内存不够用的情况下,比如处理了1千条数据了,那么这个时候内存不够了,那么就可以将已经处理完的1千条数据从内存里面垃圾回收掉,或者用其他方法,腾出空间来吧。
但是MapPartitions操作,对于大量数据来说,比如甚至一个partition,100万数据,一次传入一个function以后,那么可能一下子内存不够,但是又没有办法去腾出内存空间来,可能就OOM,内存溢出。
注意:
在项目中,自己先去估算一下RDD的数据量,以及每个partition的量,还有自己分配给每个executor的内存资源。看看一下子内存容纳所有的partition数据,行不行。如果行,可以试一下,能跑通就好。性能肯定是有提升的。
但是试了一下以后,发现,不行,OOM了,那就放弃吧。
2、filter过后使用coalesce算子减少分区数量
默认情况下,经过了这种filter之后,RDD中的每个partition的数据量,可能都不太一样了。(原本每个partition的数据量可能是差不多的)
问题:
1、每个partition数据量变少了,但是在后面进行处理的时候,还是要跟partition数量一样数量的task,来进行处理;有点浪费task计算资源。
2、每个partition的数据量不一样,会导致后面的每个task处理每个partition的时候,每个task要处理的数据量就不同,这个时候很容易发生数据倾斜。。。。
比如说,第二个partition的数据量才100;但是第三个partition的数据量是900;那么在后面的task处理逻辑一样的情况下,不同的task要处理的数据量可能差别达到了9倍,甚至10倍以上;同样也就导致了速度的差别在9倍,甚至10倍以上。
解决:
1、针对第一个问题,我们希望可以进行partition的压缩吧,因为数据量变少了,那么partition其实也完全可以对应的变少。比如原来是4个partition,现在完全可以变成2个partition。那么就只要用后面的2个task来处理即可。就不会造成task计算资源的浪费。
2、针对第二个问题,其实解决方案跟第一个问题是一样的;也是去压缩partition,尽量让每个partition的数据量差不多。那么这样的话,后面的task分配到的partition的数据量也就差不多。不会造成有的task运行速度特别慢,有的task运行速度特别快。避免了数据倾斜的问题。
coalesce算子
主要就是用于在filter操作之后,针对每个partition的数据量各不相同的情况,来压缩partition的数量。减少partition的数量,而且让每个partition的数据量都尽量均匀紧凑。
3、使用foreachPartition优化写数据库性能
默认的foreach的性能缺陷:
1、task为每个数据,都要去执行一次function函数。如果100万条数据,(一个partition),调用100万次。性能比较差。
2、果每个数据,你都去创建一个数据库连接的话,那么你就得创建100万次数据库连接。数据库连接的创建和销毁,都是非常非常消耗性能的。
foreachPartition算子的好处:
1、对于我们写的function函数,就调用一次,一次传入一个partition所有的数据
2、主要创建或者获取一个数据库连接就可以
3、只要向数据库发送一次SQL语句和多组参数即可
在实际生产环境中,清一色,都是使用foreachPartition操作;但是有个问题,跟mapPartitions操作一样,如果一个partition的数量真的特别特别大,比如真的是100万,那基本上就不太靠谱了。(一下子进来,很有可能会发生OOM,内存溢出的问题)
4、repartition解决Spark SQL低并行度的性能问题
1、spark.default.parallelism
2、textFile(),传入第二个参数,指定partition数量(比较少用)
在生产环境中,是最好自己设置一下的。官网有推荐的设置方式,你的spark-submit脚本中,会指定你的application总共要启动多少个executor,100个;每个executor多少个cpu core,2~3个;总共application,有cpu core,200个。
官方推荐,根据你的application的总cpu core数量(在spark-submit中可以指定,200个),自己手动设置spark.default.parallelism参数,指定为cpu core总数的2~3倍。400~600个并行度。600。
设置的这个并行度,在哪些情况下会生效?哪些情况下,不会生效?
如果没有使用Spark SQL(DataFrame),那么你整个spark application默认所有stage的并行度都是你设置的那个参数。(除非你使用coalesce算子缩减过partition数量)
问题来了:如果使用了Spark SQL。用Spark SQL的那个stage的并行度,你没法自己指定。Spark SQL自己会默认根据hive表对应的hdfs文件的block,自动设置Spark SQL查询所在的那个stage的并行度。你自己通过spark.default.parallelism参数指定的并行度,只会在没有Spark SQL的stage中生效。
比如你第一个stage,用了Spark SQL从hive表中查询出了一些数据,然后做了一些transformation操作,接着做了一个shuffle操作(groupByKey);下一个stage,在shuffle操作之后,做了一些transformation操作。hive表,对应了一个hdfs文件,有20个block;你自己设置了spark.default.parallelism参数为100。
你的第一个stage的并行度,是不受你的控制的,就只有20个task;第二个stage的并行度,才是你自己设置的100。
产生的问题?
Spark SQL默认情况下,它的那个并行度,咱们没法设置。可能导致的问题,也许没什么问题,也许很有问题。Spark SQL所在的那个stage中,后面的那些transformation操作,可能会有非常复杂的业务逻辑,甚至说复杂的算法。如果你的Spark SQL默认把task数量设置的很少,20个,然后每个task要处理很大的数据量,然后还要执行特别复杂的算法。
这个时候,就会导致第一个stage的速度,特别慢。第二个stage,1000个task,刷刷刷,非常快。
解决方法:
repartition算子,Spark SQL这一步的并行度和task数量,肯定是没有办法去改变了。但是呢,可以用于Spark SQL查询出来的RDD,使用repartition算子,去重新进行分区,此时可以分区成多个partition,比如从20个partition,分区成100个。
然后呢,从repartition以后的RDD,再往后,并行度和task数量,就会按照你预期的来了。就可以避免跟Spark SQL绑定在一个stage中的算子,只能使用少量的task去处理大量数据以及复杂的算法逻辑。
五、troubleshooting调优
1、控制shuffle reduce端缓冲大小,避免OOM
spark.reducer.maxSizeInFlight,48
spark.reducer.maxSizeInFlight,24
map端的task是不断的输出数据的,数据量可能是很大的。
而reduce端的task,并不是等到map端task将属于自己的那份数据全部写入磁盘文件之后,才去拉取的。map端写一点数据,reduce端task就会拉取一小部分数据,立即进行后面的聚合、算子函数的应用。
每次reduece能够拉取多少数据,就由buffer来决定。因为拉取过来的数据,都是先放在buffer中的。然后才用后面的executor分配的堆内存占比(0.2),hashmap,去进行后续的聚合、函数的执行。
可能出现的问题:
但是有的时候,map端的数据量特别大,然后写出的速度特别快。reduce端所有task,拉取的时候,全部达到自己的缓冲的最大极限值,缓冲,48M(reduce端默认缓冲48M),全部填满。这个时候,再加上你的reduce端执行的聚合函数的代码,可能会创建大量的对象。也许,一下子,内存就撑不住了,就会OOM。reduce端的内存中,就会发生内存溢出的问题。
解决方法:
这时候就应该减少reduce端task缓冲的大小。我宁愿多拉取几次,但是每次同时能够拉取到reduce端每个task的数量,比较少,就不容易发生OOM内存溢出的问题。(比如,可以调节成12M)
2、解决JVM GC导致的shuffle文件拉去失败问题
spark.shuffle.io.maxRetries 3
spark.shuffle.io.retryWait 5s
下一个stage的executor,可能是还没有停止掉的,task想要去上一个stage的task所在的exeuctor,去拉取属于自己的数据,结果由于对方正在gc,就导致拉取了半天没有拉取到。就很可能会报出,shuffle file not found。但是,可能下一个stage又重新提交了stage或task以后,再执行就没有问题了,因为可能第二次就没有碰到JVM在gc了。
在spark的作业中;shuffle file not found(spark作业中,非常非常常见的)而且,有的时候,它是偶尔才会出现的一种情况。有的时候,出现这种情况以后,会重新去提交stage、task。重新执行一遍,发现就好了。没有这种错误了。
log怎么看?用client模式去提交你的spark作业。比如standalone client;yarn client。一提交作业,直接可以在本地看到刷刷刷更新的log。
spark.shuffle.io.maxRetries 60
spark.shuffle.io.retryWait 60s
第一个参数,意思就是说,shuffle文件拉取的时候,如果没有拉取到(拉取失败),最多或重试几次(会重新拉取几次文件),默认是3次。
第二个参数,意思就是说,每一次重试拉取文件的时间间隔,默认是5s钟。
最多可以忍受1个小时没有拉取到shuffle file。只是去设置一个最大的可能的值。full gc不可能1个小时都没结束吧。
3、解决各种序列化导致的报错
用client模式去提交spark作业,观察本地打印出来的log。如果出现了类似于Serializable、Serialize等等字眼,报错的log
序列化报错要注意的3个点:
a、你的算子函数里面,如果使用到了外部的自定义类型的变量,那么此时,就要求你的自定义类型,必须是可序列化的。
final Teacher teacher = new Teacher("leo");
studentsRDD.foreach(new VoidFunction() {
public void call(Row row) throws Exception {
String teacherName = teacher.getName();
....
}
});
public class Teacher implements Serializable {
}
b、如果要将自定义的类型,作为RDD的元素类型,那么自定义的类型也必须是可以序列化的
JavaPairRDD<Integer, Teacher> teacherRDD
JavaPairRDD<Integer, Student> studentRDD
studentRDD.join(teacherRDD)
public class Teacher implements Serializable {
}
public class Student implements Serializable {
}
c、不能在上述两种情况下,去使用一些第三方的,不支持序列化的类型
Connection conn =
studentsRDD.foreach(new VoidFunction() {
public void call(Row row) throws Exception {
conn.....
}
});
Connection数据库连接是不支持序列化的
4、解决算子函数返回NULL导致的问题
在算子函数中,返回null
return actionRDD.mapToPair(new PairFunction<Row, String, Row>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<String, Row> call(Row row) throws Exception {
return new Tuple2<String, Row>("-999", RowFactory.createRow("-999"));
}
});
大家可以看到,在有些算子函数里面,是需要我们有一个返回值的。但是,有时候,我们可能对某些值,就是不想有什么返回值。我们如果直接返回NULL的话,那么可以不幸的告诉大家,是不行的,会报错的。
Scala.Math(NULL),异常
如果碰到你的确是对于某些值,不想要有返回值的话,有一个解决的办法:
1、在返回的时候,返回一些特殊的值,不要返回null,比如“-999”
2、在通过算子获取到了一个RDD之后,可以对这个RDD执行filter操作,进行数据过滤。filter内,可以对数据进行判定,如果是-999,那么就返回false,给过滤掉就可以了。
3、大家不要忘了,之前咱们讲过的那个算子调优里面的coalesce算子,在filter之后,可以使用coalesce算子压缩一下RDD的partition的数量,让各个partition的数据比较紧凑一些。也能提升一些性能。
5、解决yarn-client模式导致的网卡流量激增的问题
yarn-client模式下,会产生什么样的问题呢?
由于咱们的driver是启动在本地机器的,而且driver是全权负责所有的任务的调度的,也就是说要跟yarn集群上运行的多个executor进行频繁的通信(中间有task的启动消息、task的执行统计消息、task的运行状态、shuffle的输出结果)。
咱们来想象一下。比如你的executor有100个,stage有10个,task有1000个。每个stage运行的时候,都有1000个task提交到executor上面去运行,平均每个executor有10个task。接下来问题来了,driver要频繁地跟executor上运行的1000个task进行通信。通信消息特别多,通信的频率特别高。运行完一个stage,接着运行下一个stage,又是频繁的通信。
在整个spark运行的生命周期内,都会频繁的去进行通信和调度。所有这一切通信和调度都是从你的本地机器上发出去的,和接收到的。这是最要人命的地方。你的本地机器,很可能在30分钟内(spark作业运行的周期内),进行频繁大量的网络通信。那么此时,你的本地机器的网络通信负载是非常非常高的。会导致你的本地机器的网卡流量会激增!!!
你的本地机器的网卡流量激增,当然不是一件好事了。因为在一些大的公司里面,对每台机器的使用情况,都是有监控的。不会允许单个机器出现耗费大量网络带宽等等这种资源的情况。运维人员。可能对公司的网络,或者其他(你的机器还是一台虚拟机),对其他机器,都会有负面和恶劣的影响。
解决的方法:
实际上解决的方法很简单,就是心里要清楚,yarn-client模式是什么情况下,可以使用的?yarn-client模式,通常咱们就只会使用在测试环境中,你写好了某个spark作业,打了一个jar包,在某台测试机器上,用yarn-client模式去提交一下。因为测试的行为是偶尔为之的,不会长时间连续提交大量的spark作业去测试。还有一点好处,yarn-client模式提交,可以在本地机器观察到详细全面的log。通过查看log,可以去解决线上报错的故障(troubleshooting)、对性能进行观察并进行性能调优。
实际上线了以后,在生产环境中,都得用yarn-cluster模式,去提交你的spark作业。
yarn-cluster模式,就跟你的本地机器引起的网卡流量激增的问题,就没有关系了。也就是说,就算有问题,也应该是yarn运维团队和基础运维团队之间的事情了。使用了yarn-cluster模式以后,就不是你的本地机器运行Driver,进行task调度了。是yarn集群中,某个节点会运行driver进程,负责task调度。
解决yarn-cluster模式的JVM内存溢出无法执行问题
spark-submit脚本中,加入以下配置,增大永久代内存:
--conf spark.driver.extraJavaOptions="-XX:PermSize=128M -XX:MaxPermSize=256M"
总结一下yarn-client和yarn-cluster模式的不同之处:
yarn-client模式,driver运行在本地机器上的(JVM进程);yarn-cluster模式,driver是运行在yarn集群上某个nodemanager节点上面的。
yarn-client会导致本地机器负责spark作业的调度,所以网卡流量会激增;
yarn-cluster模式就没有这个问题。
yarn-client的driver运行在本地,通常来说本地机器跟yarn集群都不会在一个机房的,所以说性能可能不是特别好;
yarn-cluster模式下,driver是跟yarn集群运行在一个机房内,性能上来说,也会好一些。
实践经验,碰到的yarn-cluster的问题:
有的时候,运行一些包含了spark sql的spark作业,可能会碰到yarn-client模式下,可以正常提交运行;yarn-cluster模式下,可能是无法提交运行的,会报出JVM的PermGen(永久代)的内存溢出,OOM。
yarn-client模式下,driver是运行在本地机器上的,spark使用的JVM的PermGen的配置,是本地的spark-class文件(spark客户端是默认有配置的),JVM的永久代的大小是128M,这个是没有问题的;但是呢,在yarn-cluster模式下,driver是运行在yarn集群的某个节点上的,使用的是没有经过配置的默认设置(PermGen永久代大小),82M。
spark-sql,它的内部是要进行很复杂的SQL的语义解析、语法树的转换等等,特别复杂,在这种复杂的情况下,如果说你的sql本身特别复杂的话,很可能会比较导致性能的消耗,内存的消耗。可能对PermGen永久代的占用会比较大。
所以,此时,如果对永久代的占用需求,超过了82M的话,但是呢又在128M以内;就会出现如上所述的问题,yarn-client模式下,默认是128M,这个还能运行;如果在yarn-cluster模式下,默认是82M,就有问题了。会报出PermGen Out of Memory error log。
解决方法:
既然是JVM的PermGen永久代内存溢出,那么就是内存不够用。咱们呢,就给yarn-cluster模式下的,driver的PermGen多设置一些。
spark-submit脚本中,加入以下配置即可:
--conf spark.driver.extraJavaOptions="-XX:PermSize=128M -XX:MaxPermSize=256M"
这个就设置了driver永久代的大小,默认是128M,最大是256M。那么,这样的话,就可以基本保证你的spark作业不会出现上述的yarn-cluster模式导致的永久代内存溢出的问题。
另一个问题:spark sql,sql,要注意,一个问题
sql,有大量的or语句。比如where keywords='' or keywords='' or keywords=''
当达到or语句,有成百上千的时候,此时可能就会出现一个driver端的jvm stack overflow,JVM栈内存溢出的问题
JVM栈内存溢出,基本上就是由于调用的方法层级过多,因为产生了大量的,非常深的,超出了JVM栈深度限制的,递归。递归方法。我们的猜测,spark sql,有大量or语句的时候,spark sql内部源码中,在解析sql,比如转换成语法树,或者进行执行计划的生成的时候,对or的处理是递归。or特别多的话,就会发生大量的递归。
JVM Stack Memory Overflow,栈内存溢出。
这种时候,建议不要搞那么复杂的spark sql语句。采用替代方案:将一条sql语句,拆解成多条sql语句来执行。每条sql语句,就只有100个or子句以内;一条一条SQL语句来执行。根据生产环境经验的测试,一条sql语句,100个or子句以内,是还可以的。通常情况下,不会报那个栈内存溢出。
6、解决错误的持久化方式以及checkpoint的使用
错误的持久化使用方式:
usersRDD,想要对这个RDD做一个cache,希望能够在后面多次使用这个RDD的时候,不用反复重新计算RDD;可以直接使用通过各个节点上的executor的BlockManager管理的内存 / 磁盘上的数据,避免重新反复计算RDD。
usersRDD.cache()
usersRDD.count()
usersRDD.take()
上面这种方式,不要说会不会生效了,实际上是会报错的。会报一大堆file not found的错误。
正确的持久化使用方式:
usersRDD
usersRDD = usersRDD.cache()
val cachedUsersRDD = usersRDD.cache()
之后再去使用usersRDD,或者cachedUsersRDD,就可以了。就不会报错了。所以说,这个是咱们的持久化的正确的使用方式。
持久化:大多数时候,都是会正常工作的。但是就怕,有些时候,会出现意外。比如说,缓存在内存中的数据,可能莫名其妙就丢失掉了。或者说,存储在磁盘文件中的数据,莫名其妙就没了,文件被误删了。
出现上述情况的时候,接下来,如果要对这个RDD执行某些操作,可能会发现RDD的某个partition找不到了。对消失的partition重新计算,计算完以后再缓存和使用。有些时候,计算某个RDD,可能是极其耗时的。可能RDD之前有大量的父RDD。那么如果你要重新计算一个partition,可能要重新计算之前所有的父RDD对应的partition。
这种情况下,就可以选择对这个RDD进行checkpoint,以防万一。进行checkpoint,就是说,会将RDD的数据,持久化一份到容错的文件系统上(比如hdfs)。在对这个RDD进行计算的时候,如果发现它的缓存数据不见了。优先就是先找一下有没有checkpoint数据(到hdfs上面去找)。如果有的话,就使用checkpoint数据了。不至于说是去重新计算。
checkpoint,其实就是可以作为是cache的一个备胎。如果cache失效了,checkpoint就可以上来使用了。checkpoint有利有弊,利在于,提高了spark作业的可靠性,一旦发生问题,还是很可靠的,不用重新计算大量的rdd;但是弊在于,进行checkpoint操作的时候,也就是将rdd数据写入hdfs中的时候,还是会消耗性能的。checkpoint,用性能换可靠性。
checkpoint原理:
1、在代码中,用SparkContext,设置一个checkpoint目录,可以是一个容错文件系统的目录,比如hdfs;
2、在代码中,对需要进行checkpoint的rdd,执行RDD.checkpoint();
3、RDDCheckpointData(spark内部的API),接管你的RDD,会标记为marked for checkpoint,准备进行checkpoint
4、你的job运行完之后,会调用一个finalRDD.doCheckpoint()方法,会顺着rdd lineage,回溯扫描,发现有标记为待checkpoint的rdd,就会进行二次标记,inProgressCheckpoint,正在接受checkpoint操作
5、job执行完之后,就会启动一个内部的新job,去将标记为inProgressCheckpoint的rdd的数据,都写入hdfs文件中。(备注,如果rdd之前cache过,会直接从缓存中获取数据,写入hdfs中;如果没有cache过,那么就会重新计算一遍这个rdd,再checkpoint)
6、将checkpoint过的rdd之前的依赖rdd,改成一个CheckpointRDD*,强制改变你的rdd的lineage。后面如果rdd的cache数据获取失败,直接会通过它的上游CheckpointRDD,去容错的文件系统,比如hdfs,中,获取checkpoint的数据。
六、数据倾斜
1、数据倾斜介绍与定位
a、数据倾斜的原理
在执行shuffle操作的时候,大家都知道,我们之前讲解过shuffle的原理。是按照key,来进行values的数据的输出、拉取和聚合的。同一个key的values,一定是分配到一个reduce task进行处理的。多个key对应的values,总共是90万。但是问题是,可能某个key对应了88万数据,key-88万values,分配到一个task上去面去执行。另外两个task,可能各分配到了1万数据,可能是数百个key,对应的1万条数据。
第一个和第二个task,各分配到了1万数据;那么可能1万条数据,需要10分钟计算完毕;第一个和第二个task,可能同时在10分钟内都运行完了;第三个task要88万条,88 * 10 = 880分钟 = 14.5个小时;
b、数据倾斜的现象,有两种表现:
1、你的大部分的task,都执行的特别特别快,刷刷刷,就执行完了(你要用client模式,standalone client,yarn client,本地机器主要一执行spark-submit脚本,就会开始打印log),task175 finished;剩下几个task,执行的特别特别慢,前面的task,一般1s可以执行完5个;最后发现1000个task,998,999 task,要执行1个小时,2个小时才能执行完一个task。
出现数据倾斜了
还算好的,因为虽然老牛拉破车一样,非常慢,但是至少还能跑。
2、运行的时候,其他task都刷刷刷执行完了,也没什么特别的问题;但是有的task,就是会突然间,啪,报了一个OOM,JVM Out Of Memory,内存溢出了,task failed,task lost,resubmitting task。反复执行几次都到了某个task就是跑不通,最后就挂掉。某个task就直接OOM,那么基本上也是因为数据倾斜了,task分配的数量实在是太大了!!!所以内存放不下,然后你的task每处理一条数据,还要创建大量的对象。内存爆掉了。
出现数据倾斜了
这种就不太好了,因为你的程序如果不去解决数据倾斜的问题,压根儿就跑不出来。
c、数据倾斜定位与出现问题的位置:
根据log去定位
出现数据倾斜的原因,基本只可能是因为发生了shuffle操作,在shuffle的过程中,出现了数据倾斜的问题。因为某个,或者某些key对应的数据,远远的高于其他的key。
1、你在自己的程序里面找找,哪些地方用了会产生shuffle的算子,groupByKey、countByKey、reduceByKey、join
2、看log
log一般会报是在你的哪一行代码,导致了OOM异常;或者呢,看log,看看是执行到了第几个stage!!!哪一个stage,task特别慢,就能够自己用肉眼去对你的spark代码进行stage的划分,就能够通过stage定位到你的代码,哪里发生了数据倾斜。去找找,代码那个地方,是哪个shuffle操作。
2、解决方法一:聚合数据源
聚合数据源做法一:
groupByKey、reduceByKey;groupByKey,就是拿到每个key对应的values;reduceByKey,说白了,就是对每个key对应的values执行一定的计算。现在这些操作,比如groupByKey和reduceByKey,包括之前说的join。都是在spark作业中执行的。
spark作业的数据来源,通常是哪里呢?90%的情况下,数据来源都是hive表(hdfs,大数据分布式存储系统)。hdfs上存储的大数据。hive表,hive表中的数据,通常是怎么出来的呢?有了spark以后,hive比较适合做什么事情?hive就是适合做离线的,晚上凌晨跑的,ETL(extract transform load,数据的采集、清洗、导入),hive sql,去做这些事情,从而去形成一个完整的hive中的数据仓库;说白了,数据仓库,就是一堆表。spark作业的源表,hive表,其实通常情况下来说,也是通过某些hive etl生成的。hive etl可能是晚上凌晨在那儿跑。今天跑昨天的数据。
数据倾斜,某个key对应的80万数据,某些key对应几百条,某些key对应几十条;现在,咱们直接在生成hive表的hive etl中,对数据进行聚合。比如按key来分组,将key对应的所有的values,全部用一种特殊的格式,拼接到一个字符串里面去,比如“key=sessionid, value: action_seq=1|user_id=1|search_keyword….”。
对key进行group,在spark中,拿到key=sessionid,values<Iterable>;hive etl中,直接对key进行了聚合。那么也就意味着,每个key就只对应一条数据。在spark中,就不需要再去执行groupByKey+map这种操作了。直接对每个key对应的values字符串,map操作,进行你需要的操作即可。key,values串。spark中,可能对这个操作,就不需要执行shffule操作了,也就根本不可能导致数据倾斜。
或者是,对每个key在hive etl中进行聚合,对所有values聚合一下,不一定是拼接起来,可能是直接进行计算。reduceByKey,计算函数,应用在hive etl中,每个key的values。
聚合数据源做法二:
你可能没有办法对每个key,就聚合出来一条数据;
那么也可以做一个妥协;对每个key对应的数据,10万条;有好几个粒度,比如10万条里面包含了几个城市、几天、几个地区的数据,现在放粗粒度;直接就按照城市粒度,做一下聚合,几个城市,几天、几个地区粒度的数据,都给聚合起来。比如说
city_id,date,area_id
select ... from ... group by city_id,date,area_id
尽量去聚合,减少每个key对应的数量,也许聚合到比较粗的粒度之后,原先有10万数据量的key,现在只有1万数据量。减轻数据倾斜的现象和问题。
3、解决方法二:提高shuffle操作reduce并行度
如果第一种方法不适合做。那么采用第二种方法:提高shuffle操作的reduce并行度
将增加reduce task的数量,就可以让每个reduce task分配到更少的数据量,这样的话,也许就可以缓解,或者甚至是基本解决掉数据倾斜的问题。
a、原理图介绍:
b、提升shuffle reduce端并行度的具体操作
主要给我们所有的shuffle算子,比如groupByKey、countByKey、reduceByKey。在调用的时候,传入进去一个参数。一个数字。那个数字,就代表了那个shuffle操作的reduce端的并行度。那么在进行shuffle操作的时候,就会对应着创建指定数量的reduce task。
这样的话,就可以让每个reduce task分配到更少的数据。基本可以缓解数据倾斜的问题。
比如说,原本某个task分配数据特别多,直接OOM,内存溢出了,程序没法运行,直接挂掉。按照log,找到发生数据倾斜的shuffle操作,给它传入一个并行度数字,这样的话,原先那个task分配到的数据,肯定会变少。就至少可以避免OOM的情况,程序至少是可以跑的。
c、提升shuffle reduce并行度的缺陷
治标不治本的意思,因为,它没有从根本上改变数据倾斜的本质和问题。不像第一个和第二个方案(直接避免了数据倾斜的发生)。原理没有改变,只是说,尽可能地去缓解和减轻shuffle reduce task的数据压力,以及数据倾斜的问题。
实际生产环境中的经验:
1、如果最理想的情况下,提升并行度以后,减轻了数据倾斜的问题,或者甚至可以让数据倾斜的现象忽略不计,那么就最好。就不用做其他的数据倾斜解决方案了。
2、不太理想的情况下,就是比如之前某个task运行特别慢,要5个小时,现在稍微快了一点,变成了4个小时;或者是原先运行到某个task,直接OOM,现在至少不会OOM了,但是那个task运行特别慢,要5个小时才能跑完。
那么,如果出现第二种情况的话,各位,就立即放弃这种方法,开始去尝试和选择后面的方法解决。
4、解决方法之三:随机key实现双重聚合
原理图介绍:
使用场景:(1)groupByKey(2)reduceByKey
join,咱们通常不会这样来做,后面有针对不同的join造成的数据倾斜的问题的解决方案。
5、解决方法之四:将reduce join 转换为map join
普通reduce join: map join:
普通的join
肯定是要走shuffle;那么,所以既然是走shuffle,那么普通的join,就肯定是走的是reduce join。先将所有相同的key,对应的values,汇聚到一个task中,然后再进行join。
reduce join转换为map join
如果两个RDD要进行join,其中一个RDD是比较小的。一个RDD是100万数据,一个RDD是1万数据。(一个RDD是1亿数据,一个RDD是100万数据)其中一个RDD必须是比较小的,broadcast出去那个小RDD的数据以后,就会在每个executor的block manager中都驻留一份。要确保你的内存足够存放那个小RDD中的数据
这种方式下,根本不会发生shuffle操作,肯定也不会发生数据倾斜;从根本上杜绝了join操作可能导致的数据倾斜的问题;对于join中有数据倾斜的情况,大家尽量第一时间先考虑这种方式,效果非常好;如果某个RDD比较小的情况下。
不适合的情况:
两个RDD都比较大,那么这个时候,你去将其中一个RDD做成broadcast,就很笨拙了。很可能导致内存不足。最终导致内存溢出,程序挂掉。而且其中某些key(或者是某个key),还发生了数据倾斜;此时可以采用最后两种方式。
特别声明:
对于join这种操作,不光是考虑数据倾斜的问题;即使是没有数据倾斜问题,也完全可以优先考虑,用我们讲的这种高级的reduce join转map join的技术,不要用普通的join,去通过shuffle,进行数据的join;完全可以通过简单的map,使用map join的方式,牺牲一点内存资源;在可行的情况下,优先这么使用。不走shuffle,直接走map,性能肯定是提高很多的。
6、解决方法之五:sample采样倾斜key进行两次join
方案的实现思路:其实关键之处在于,将发生数据倾斜的key,单独拉出来,放到一个RDD中去;就用这个原本会倾斜的key RDD跟其他RDD,单独去join一下,这个时候,key对应的数据,可能就会分散到多个task中去进行join操作,最后将join后的表进行union操作。
就不至于,这个key跟之前其他的key混合在一个RDD中时,导致一个key对应的所有数据,都到一个task中去,就会导致数据倾斜。
应用场景:
优先对于join,肯定是希望能够采用上一讲讲的,reduce join转换map join。两个RDD数据都比较大,那么就不要那么搞了。
针对你的RDD的数据,你可以自己把它转换成一个中间表,或者是直接用countByKey()的方式,你可以看一下这个RDD各个key对应的数据量;此时如果你发现整个RDD就一个,或者少数几个key,是对应的数据量特别多;尽量建议,比如就是一个key对应的数据量特别多。
此时可以采用咱们的这种方案,单拉出来那个最多的key;单独进行join,尽可能地将key分散到各个task上去进行join操作。
什么时候不适用呢?
如果一个RDD中,导致数据倾斜的key,特别多;那么此时,最好还是不要这样了;还是使用我们最后一个方案,终极的join数据倾斜的解决方案。
进一步优化:
就是说,咱们单拉出来了,一个或者少数几个可能会产生数据倾斜的key,然后还可以进行更加优化的一个操作;
对于那个key,从另外一个要join的表中,也过滤出来一份数据,比如可能就只有一条数据。userid2infoRDD,一个userid key,就对应一条数据。然后呢,采取对那个只有一条数据的RDD,进行flatMap操作,打上100个随机数,作为前缀,返回100条数据。
单独拉出来的可能产生数据倾斜的RDD,给每一条数据,都打上一个100以内的随机数,作为前缀。
再去进行join,是不是性能就更好了。肯定可以将数据进行打散,去进行join。join完以后,可以执行map操作,去将之前打上的随机数,给去掉,然后再和另外一个普通RDD join以后的结果,进行union操作。
7、解决方法之六:使用随机数以及扩容表进行join
当采用随机数和扩容表进行join解决数据倾斜的时候,就代表着,你的之前的数据倾斜的解决方案,都没法使用。这个方案是没办法彻底解决数据倾斜的,更多的,是一种对数据倾斜的缓解。
步骤:
1、选择一个RDD,要用flatMap,进行扩容(比较小的RDD),将每条数据,映射为多条数据,每个映射出来的数据,都带了一个n以内的随机数,通常来说,会选择10以内。
2、将另外一个RDD,做普通的map映射操作,每条数据,都打上一个10以内的随机数。
3、最后,将两个处理后的RDD,进行join操作。
另一个方法:
sample采样倾斜key并单独进行join
1、将key,从另外一个RDD中过滤出的数据,可能只有一条,或者几条,此时,咱们可以任意进行扩容,扩成1000倍。
2、将从第一个RDD中拆分出来的那个倾斜key RDD,打上1000以内的一个随机数。
3、join并且提供并行度。这样配合上,提升shuffle reduce并行度,join(rdd, 1000)。通常情况下,效果还是非常不错的。打散成100份,甚至1000份,2000份,去进行join,那么就肯定没有数据倾斜的问题了吧。
此方法局限性:
1、因为你的两个RDD都很大,所以你没有办法去将某一个RDD扩的特别大,一般咱们就是扩10倍。
2、如果就是10倍的话,那么数据倾斜问题,的确是只能说是缓解和减轻,不能说彻底解决。
最新经典文章,欢迎关注公众号
作者:朱倩
原文链接:https://zhuanlan.zhihu.com/p/71270044
|
|