搜索
搜 索
本版
文章
帖子
用户
图文精华
hadoop-2.6.0+zookeeper-3.4.6+hbase-1.0.0+hive-1.1.0完全分布 ...
首页
Portal
专题
BBS
面试
办公|编程助手
更多
登录
注册
用户组:游客
主题
帖子
云币
我的帖子
我的收藏
我的好友
我的勋章
设置
退出
导读
淘贴
博客
群组
社区VIP
APP下载
今日排行
本周排行
本周热帖
本月排行
本月热帖
会员排行
About云-梭伦科技
»
专题
›
技术学习(版主发帖区)
›
大数据学习
›
总结型
›
案例实战:每日上亿请求量的电商系统,JVM年轻代垃圾回 ...
0
0
1
分享
案例实战:每日上亿请求量的电商系统,JVM年轻代垃圾回收参数如何优化?
林宝宝
2019-8-11 21:00:55
发表于
总结型
[显示全部楼层]
只看大图
阅读模式
关闭右栏
0
3232
问题导读:
1.抗住大促的瞬时压力需要几台机器?
2.内存到底该如何分配?新生代垃圾回收优化之一:Survivor空间够不够?
3.新生代对象躲过多少次垃圾回收后进入老年代?多大的对象直接进入老年代?
1、案例背景引入
按照惯例,我们接下来会用案例驱动来带着大家分析到底该如何在特定场景下,预估系统的内存使用模型。
然后合理优化新生代、老年代、Eden和Survivor各个区域的内存大小。
接着再尽量优化参数避免新生代的对象进入老年代,尽量让对象留在新生代里被回收掉。
我们这里的背景是电商系统,电商系统其实一般会拆分为很多的子系统独立部署
比如商品系统、订单系统、促销系统、库存系统、仓储系统、会员系统,等等
我们这里就以比较核心的订单系统作为例子来说明。
(提示:食用本案例之前,请务必充分理解专栏之前两周的文章!)
我们的案例背景是每日上亿请求量的电商系统,那么大家可以来推算一下每日上亿请求量的电商系统,他会每日有多少活跃用户?
一般按每个用户平均访问20次来计算,那么上亿请求量,大致需要有500万日活用户。
那么继续来推算一下,这500万的日活用户都是会进来进行大量的浏览,那么多少人会下订单?
这里可以按照10%的付费转化率来计算,每天大概有50万人会下订单,那么大致就是每天会有50万订单。
这50万订单算他集中在每天4小时的高峰期内,那么其实平均下来每秒钟大概也就几十个订单,大家是不是觉得根本没啥可说的?
因为几十个订单的压力下,根本就不需要对JVM多关注,基本上就是每秒钟占用一些新生代内存,隔很久新生代才会满。然后一次Minor GC后垃圾对象清理掉,内存就空出来了,几乎无压力。
2、特殊的电商大促场景
但是如果你要是考虑到特殊的电商大促场景,就不会这么想了
因为很多中小型的电商平台,确实平时系统压力其实没那么大,也没太大的高并发,每秒几千并发压力就算是高峰压力了。
但是如果遇到一些大促场景,比如双11什么的,情况就不同了。
假设在类似双11的节日里,零点的时候,很多人等着大促开始就要剁手购物,这个时候,可能在大促开始的短短10分钟内,瞬间就会有50万订单。
那么此时每秒就会有接近1000的下单请求,我们就针对这种大促场景来对订单系统的内存使用模型分析一下。
3、抗住大促的瞬时压力需要几台机器?
那么要抗住大促期间的瞬时下单压力,订单系统需要部署几台机器呢?
基本上可以按3台来算,就是每台机器每秒需要抗300个下单请求。这个也是非常合理的,而且需要假设订单系统部署的就是最普通的标配4核8G机器。
从机器本身的CPU资源和内存资源角度,抗住每秒300个下单请求是没问题的。
但是问题就在于需要对JVM有限的内存资源进行合理的分配和优化,包括对垃圾回收进行合理的优化,让JVM的GC次数尽可能最少,而且尽量避免Full GC,这样可以尽可能减少JVM的GC对高峰期的系统新更难的影响。
4、大促高峰期订单系统的内存使用模型估算
背景已经全部说完了,接下来咱们就得来预估订单系统的内存使用模型了.
基本上可以按照每秒钟处理300个下单请求来估算,其实无论是订单处理性能还是并发情况,都跟生产很接近
因为处理下单请求是比较耗时的,涉及很多接口的调用,基本上每秒处理100~300个下单请求是差不多的。
那么每个订单咱们就按1kb的大小来估算,单单是300个订单就会有300kb的内存开销
然后算上订单对象连带的订单条目对象、库存、促销、优惠券等等一系列的其他业务对象,一般需要对单个对象开销放大10倍~20倍。
此外,除了下单之外,这个订单系统还会有很多订单相关的其他操作,比如订单查询之类的,所以连带算起来,可以往大了估算,再扩大10倍的量。
那么每秒钟会有大概300kb * 20 * 10 = 60mb的内存开销。
但是一秒过后,可以认为这60mb的对象就是垃圾了,因为300个订单处理完了,所有相关对象都失去了引用,可以回收的状态。
大家看下图:
5、内存到底该如何分配?
假设我们有4核8G的机器,那么给JVM的内存一般会到4G,剩下几个G会留点空余给操作系统之类的来使用
不要想着把机器内存一下子都耗尽,其中堆内存我们可以给3G,新生代我们可以给到1.5G,老年代也是1.5G。
然后每个线程的Java虚拟机栈有1M,那么JVM里如果有几百个线程大概会有几百M
然后再给永久代256M内存,基本上这4G内存就差不多了。
同时还要记得设置一些必要的参数,比如说打开“-XX:HandlePromotionFailure”选项(不熟悉这个参数的,可以回头复习一下专栏之前的文章)
JVM参数如下所示:
“-Xms3072M -Xmx3072M -Xmn1536M -Xss1M -XX:PermSize=256M -XX:MaxPermSize=256M -XX:HandlePromotionFailure”
但是“-XX:HandlePromotionFailure”参数在JDK 1.6以后就被废弃了,所以现在一般都不会在生产环境里设置这个参数了。
在JDK 1.6以后,只要判断“老年代可用空间”> “新生代对象总和”,或者“老年代可用空间”> “历次Minor GC升入老年代对象的平均大小”
上述两个条件满足一个,就可以直接进行Minor GC,不需要提前触发Full GC了。
所以实际上,如果大家用的是JDK 1.7或者JDK 1.8,那么JVM参数就保持如下即可,后面也都不再加入这个参数了:
“-Xms3072M -Xmx3072M -Xmn1536M -Xss1M -XX:PermSize=256M -XX:MaxPermSize=256M”
此时JVM内存入下图所示。
接着就很明确了,订单系统的系统程序在大促期间不停的运行,每秒处理300个订单,都会占据新生代60MB的内存空间
但是1秒过后这60MB对象都会变成垃圾,那么新生代1.5G的内存空间大概需要25秒就会占满,如下图。
25秒过后就会要进行Minor GC了,此时因为有“-XX:HandlePromotionFailure”选项,所以你可以认为需要进行的检查,主要就是比较 “老年代可用空间大小”和“历次Minor GC后进入老年代对象的平均大小”,刚开始肯定这个检查是可以通过的。
所以Minor GC直接运行,一下子可以回收掉99%的新生代对象,因为除了最近一秒的订单请求还在处理,大部分订单早就处理完了,所以此时可能存活对象就100MB左右。
但是这里问题来了,如果“-XX:SurvivorRatio”参数默认值为8,那么此时新生代里Eden区大概占据了1.2GB内存,每个Survivor区是150MB的内存,如下图。
所以Eden区1.2GB满了就要进行Minor GC了,因此大概只需要20秒,就会把Eden区塞满,就要进行Minor GC了。
然后GC后存活对象在100MB左右,会放入S1区域内。如下图。
然后再次运行20秒,把Eden区占满,再次垃圾回收Eden和S1中的对象,存活对象可能还是在100MB左右会进入S2区,如下图。
此时JVM参数如下:
“-Xms3072M -Xmx3072M -Xmn1536M -Xss1M -XX:PermSize=256M -XX:MaxPermSize=256M -XX:SurvivorRatio=8”
6、新生代垃圾回收优化之一:Survivor空间够不够
首先在进行JVM优化的时候,第一个要考虑的问题,就是你通过估算,你的新生代的Survivor区到底够不够?
按照上述逻辑,首先每次新生代垃圾回收在100MB左右,有可能会突破150MB,那么岂不是经常会出现Minor GC过后的对象无法放入Survivor中?然后岂不是频繁会让对象进入老年代?
还有,即使Minor GC后的对象少于150MB,但是即使是100MB的对象进入Survivor区,因为这是一批同龄对象,直接超过了Survivor区空间的50%,此时也可能会导致对象进入老年代。
(关于jvm的垃圾回收规则,如果不太清楚,请参加专栏之前的文章)
所以其实按照我们这个模型来说,Survivor区域是明显不足的。
这里其实建议的是调整新生代和老年代的大小,因为这种普通业务系统,明显大部分对象都是短生存周期的,根本不应该频繁进入老年代,也没必要给老年代维持过大的内存空间,首先得先让对象尽量留在新生代里。
所以此时可以考虑把新生代调整为2G,老年代为1G,那么此时Eden为1.6G,每个Survivor为200MB,如下图。
这个时候,Survivor区域变大,就大大降低了新生代GC过后存活对象在Survivor里放不下的问题,或者是同龄对象超过Survivor 50%的问题。
这样就大大降低了新生代对象进入老年代的概率。
此时JVM的参数如下:
“-Xms3072M -Xmx3072M -Xmn2048M -Xss1M -XX:PermSize=256M -XX:MaxPermSize=256M -XX:SurvivorRatio=8”
其实对任何系统,首先类似上文的内存使用模型预估以及合理的分配内存,尽量让每次Minor GC后的对象都留在Survivor里,不要进入老年代,这是你首先要进行优化的一个地方。
7、新生代对象躲过多少次垃圾回收后进入老年代?
大家都知道,除了Minor GC后对象无法放入Survivor会导致一批对象进入老年代之外,还有就是有些对象连续躲过15次垃圾回收后会自动升入老年代。
其实按照上述内存运行模型,基本上20多秒触发一次Minor GC,那么如果按照“-XX:MaxTenuringThreshold”参数的默认值15次来说,你要是连续躲过15次GC,就是一个对象在新生代停留超过了几分钟了,此时他进入老年代也是应该的。
有些博客会说,应该提高这个参数,比如增加到20次,或者30次,其实那种说法根本是不对的
因为你对这个参数考虑必须结合系统的运行模型来说,如果躲过15次GC都几分钟了,一个对象几分钟都不能被回收,说明肯定是系统里类似用@Service、@Controller之类的注解标注的那种需要长期存活的核心业务逻辑组件。
那么他就应该进入老年代,何况这种对象一般很少,一个系统累计起来最多也就几十MB而已。
所以你说你提高“-XX:MaxTenuringThreshold”参数的值,有啥用呢?让这些对象在新生代里多停留几分钟?
因此考虑问题,一定不要人云亦云,要结合运行原理,自己推演和思考,不同的业务系统还都是不一样的。
其实这个参数甚至你都可以降低他的值,比如降低到5次,也就是说一个对象如果躲过5次Minor GC,在新生代里停留超过1分钟了,尽快就让他进入老年代,别在新生代里占着内存了。
总之,对于这个参数务必是结合你的系统具体运行的模型来考虑。
要记住,JVM没有万能的最佳参数,但是有一套通用的分析和优化的方法。
此时JVM参数如下:
“-Xms3072M -Xmx3072M -Xmn2048M -Xss1M -XX:PermSize=256M -XX:MaxPermSize=256M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5”
8、多大的对象直接进入老年代?
另外有一个逻辑是说,大对象可以直接进入老年代 ,因为大对象说明是要长期存活和使用的
比如在JVM里可能会缓存一些数据,这个一般可以结合自己系统中到底有没有创建大对象来决定。
但是一般来说,给他设置个1MB足以,因为一般很少有超过1MB的大对象。如果有,可能是你提前分配了一个大数组、大List之类的东西用来放缓存的数据。
此时JVM参数如下:
“-Xms3072M -Xmx3072M -Xmn2048M -Xss1M -XX:PermSize=256M -XX:MaxPermSize=256M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -XX:PretenureSizeThreshold=1M”
9、别忘了指定垃圾回收器
同时大家别忘了要指定垃圾回收器,新生代使用ParNew,老年代使用CMS,如下JVM参数 :
“-Xms3072M -Xmx3072M -Xmn2048M -Xss1M -XX:PermSize=256M -XX:MaxPermSize=256M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -XX:PretenureSizeThreshold=1M -XX:+UseParNewGC -XX:+UseConcMarkSweepGC”
ParNew垃圾回收器的核心参数,其实就是配套的新生代内存大小、Eden和Survivor的比例
只要你设置合理,避免Minor GC后对象放不下Survivor进入老年代,或者是动态年龄判定之后进入老年代,给新生代里的Survivor充足的空间,那么Minor GC一般就没什么问题。
然后根据你的系统运行模型,合理设置“-XX:MaxTenuringThreshold”,让那些长期存活的对象,抓紧尽快进入老年代,别在新生代里一直待着。
这样基本上一个初步的优化好的JVM参数就结合你的业务出来了。明天我们继续结合案例来分析 老年代的垃圾回收和参数优化方式。
10、今日思考题
大家看完这个案例,可以直接去看看自己生产系统的JVM参数了,看看你的新生代、老年代、Eden和Survivor的大小
然后去估算一下你的系统运行模型:
每秒占用多少内存?
多长时间触发一次Minor GC?
一般Minor GC后有多少存活对象?
Survivor能放的下吗?
会不会频繁因为Survivor放不下导致对象进入老年代?
会不会因动态年龄判断规则进入老年代?
本文来自于公众号: 石杉的架构笔记
本文来源于专栏:《从零开始带你成为JVM实战高手》
是作者救火队队长开放的试读文章
原文链接:
https://mp.weixin.qq.com/s/sI2qQ8e7TOa4qGqi6-kQgA
最新经典文章,欢迎关注公众号
回复
使用道具
举报
提升卡
置顶卡
沉默卡
喧嚣卡
变色卡
千斤顶
显身卡
没找到任何评论,期待你打破沉寂
高级模式
B
Color
Image
Link
Quote
Code
Smilies
您需要登录后才可以回帖
登录
|
立即注册
本版积分规则
发表回复
回帖后跳转到最后一页
发表新帖
林宝宝
超级版主
关注
197
主题
197
帖子
9
粉丝
TA的主题
about云2019年10月08日每日一读
2019-10-7
基于Spark的面向十亿级别特征的大规模机器学习
2019-9-30
机器学习图结构模型
2019-9-30
about云2019年09月30日每日一读
2019-9-29
探索实时计算新架构-Flink云原生部署架构和实践
2019-9-27
24小时热文
kafka面试题精选
Nebula Flink Connector 在实时 ETL 的实践
Apache Doris 用户案例集
国家电网公司主数据管理系统技术规范
企业的主数据建设方法论与实践
关闭
推荐
/2
中文版ChatGPT
1.无需魔法 2.提高编程效率 3.提高文档能力
查看 »
新手帮助
新手帮助:注册遇到问题,领取资源,加入铁粉群,不会使用搜索,如何获取积分等
查看 »
意见
反馈