分享

HBase数据量过大变慢原因必知:Compaction的原理

问题导读

1.Compaction分为哪两种合并?
2.Compaction包含哪些流程?
3.Major Compaction 有哪些参数?
4.HBase中可以触发compaction的因素有哪些?
5.如何选择合适HFile合并?


相关文章:HBase数据量过大变慢原因必知:Compaction的原理
https://www.aboutyun.com/forum.php?mod=viewthread&tid=28055

HBase 底层的IO详解:Flush的工作原理
https://www.aboutyun.com/forum.php?mod=viewthread&tid=28047


HBase 底层的IO详解:Region的split工作原理
https://www.aboutyun.com/forum.php?mod=viewthread&tid=28065


HBase 底层的IO详解:WAL的原理
https://www.aboutyun.com/forum.php?mod=viewthread&tid=28083



(使用短时间的IO消耗以及带宽消耗换取后续查询的低延迟)

HBase是基于一种LSM-Tree(Log-Structured Merge Tree)存储模型设计的,写入路径上是先写入WAL(Write-Ahead-Log)即预写日志,再写入memstore缓存,满足一定条件后执行flush操作将缓存数据刷写到磁盘,生成一个HFile数据文件。随着数据不断写入,磁盘HFile文件就会越来越多,文件太多会影响HBase查询性能,主要体现在查询数据的io次数增加。为了优化查询性能,HBase会合并小的HFile以减少文件数量,这种合并HFile的操作称为Compaction,这也是为什么要进行Compaction的主要原因。

Compaction会从一个region的一个store中选择一些hfile文件进行合并。合并说来原理很简单,先从这些待合并的数据文件中读出KeyValues,再按照由小到大排列后写入一个新的文件中。之后,这个新生成的文件就会取代之前待合并的所有文件对外提供服务。HBase根据合并规模将Compaction分为了两类:MinorCompaction和MajorCompaction

Minor Compaction是指选取一些小的、相邻的StoreFile将他们合并成一个更大的StoreFile,在这个过程中不会处理已经Deleted或Expired的Cell。一次Minor Compaction的结果是更少并且更大的StoreFile。
Major Compaction是指将所有的StoreFile合并成一个StoreFile,这个过程还会清理三类无意义数据:被删除的数据、TTL过期数据、版本号超过设定版本号的数据。另外,一般情况下,Major Compaction时间会持续比较长,整个过程会消耗大量系统资源,对上层业务有比较大的影响。因此线上业务都会将关闭自动触发Major Compaction功能,改为手动在业务低峰期触发。
Compaction的作用:

1)合并文件

2)清除删除、过期、多余版本的数据

3)提高读写数据的效率

Compaction流程:

整个Compaction始于特定的触发条件,比如flush操作、周期性地Compaction检查操作等。一旦触发,HBase会将该Compaction交由一个独立的线程处理,该线程首先会从对应store中选择合适的hfile文件进行合并,这一步是整个Compaction的核心,选取文件需要遵循很多条件,比如文件数不能太多、不能太少、文件大小不能太大等等,最理想的情况是,选取那些承载IO负载重、文件小的文件集,实际实现中,HBase提供了多个文件选取算法:RatioBasedCompactionPolicy、ExploringCompactionPolicy和StripeCompactionPolicy等,用户也可以通过特定接口实现自己的Compaction算法;选出待合并的文件后,HBase会根据这些hfile文件总大小挑选对应的线程池处理,最后对这些文件执行具体的合并操作。

1.png
2.png 3.png


Major Compaction 参数

Major Compaction涉及的参数比较少,主要有大合并时间间隔与一个抖动参数因子,如下:

1.hbase.hregion.majorcompaction
Major compaction周期性时间间隔,默认值604800000,单位ms。表示major compaction默认7天调度一次,HBase 0.96.x及之前默认为1天调度一次。设置为 0 时表示禁用自动触发major compaction。需要强调的是一般major compaction持续时间较长、系统资源消耗较大,对上层业务也有比较大的影响,一般生产环境下为了避免影响读写请求,会禁用自动触发major compaction。

2.hbase.hregion.majorcompaction.jitter
Major compaction抖动参数,默认值0.5。这个参数是为了避免major compaction同时在各个regionserver上同时发生,避免此操作给集群带来很大压力。 这样节点major compaction就会在 + 或 - 两者乘积的时间范围内随机发生。

Minor Compaction 参数

Minor compaction涉及的参数比major compaction要多,各个参数的目标是为了选择合适的HFile,具体参数如下:

1.hbase.hstore.compaction.min
一次minor compaction最少合并的HFile数量,默认值 3。表示至少有3个符合条件的HFile,minor compaction才会启动。一般情况下不建议调整该参数。

如果要调整,不建议调小该参数,这样会带来更频繁的压缩,调大该参数的同时其他相关参数也应该做调整。早期参数名称为 hbase.hstore.compactionthreshold。

2.hbase.hstore.compaction.max
一次minor compaction最多合并的HFile数量,默认值 10。这个参数也是控制着一次压缩的时间。一般情况下不建议调整该参数。调大该值意味着一次compaction将会合并更多的HFile,压缩时间将会延长。

3.hbase.hstore.compaction.min.size
文件大小 < 该参数值的HFile一定是适合进行minor compaction文件,默认值 128M(memstore flush size)。意味着小于该大小的HFile将会自动加入(automatic include)压缩队列。一般情况下不建议调整该参数。

但是,在write-heavy就是写压力非常大的场景,可能需要微调该参数、减小参数值,假如每次memstore大小达到1~2M时就会flush生成HFile,此时生成的每个HFile都会加入压缩队列,而且压缩生成的HFile仍然可能小于该配置值会再次加入压缩队列,这样将会导致压缩队列持续很长。

4.hbase.hstore.compaction.max.size
文件大小 > 该参数值的HFile将会被排除,不会加入minor compaction,默认值Long.MAX_VALUE,表示没有什么限制。一般情况下也不建议调整该参数。

5.hbase.hstore.compaction.ratio
这个ratio参数的作用是判断文件大小 > hbase.hstore.compaction.min.size的HFile是否也是适合进行minor compaction的,默认值1.2。更大的值将压缩产生更大的HFile,建议取值范围在1.0~1.4之间。大多数场景下也不建议调整该参数。

6.hbase.hstore.compaction.ratio.offpeak
此参数与compaction ratio参数含义相同,是在原有文件选择策略基础上增加了一个非高峰期的ratio控制,默认值5.0。这个参数受另外两个参数 hbase.offpeak.start.hour 与 hbase.offpeak.end.hour 控制,这两个参数值为[0, 23]的整数,用于定义非高峰期时间段,默认值均为-1表示禁用非高峰期ratio设置。

触发时机
HBase中可以触发compaction的因素有很多,最常见的因素有这么三种:Memstore Flush、后台线程周期性检查、手动触发。

1. Memstore Flush: 应该说compaction操作的源头就来自flush操作,memstore flush会产生HFile文件,文件越来越多就需要compact。因此在每次执行完Flush操作之后,都会对当前Store中的文件数进行判断,一旦文件数# > ,就会触发compaction。需要说明的是,compaction都是以Store为单位进行的,而在Flush触发条件下,整个Region的所有Store都会执行compact,所以会在短时间内执行多次compaction。



2. 后台线程周期性检查:后台线程CompactionChecker定期触发检查是否需要执行compaction,检查周期为:hbase.server.thread.wakefrequency*hbase.server.compactchecker.interval.multiplier。和flush不同的是,该线程优先检查文件数#是否大于,一旦大于就会触发compaction。如果不满足,它会接着检查是否满足major compaction条件,简单来说,如果当前store中hfile的最早更新时间早于某个值mcTime,就会触发major compaction,HBase预想通过这种机制定期删除过期数据。上文mcTime是一个浮动值,浮动区间默认为[7-7*0.2,7+7*0.2],其中7为hbase.hregion.majorcompaction,0.2为hbase.hregion.majorcompaction.jitter,可见默认在7天左右就会执行一次major compaction。用户如果想禁用major compaction,只需要将参数hbase.hregion.majorcompaction设为0



3. 手动触发:一般来讲,手动触发compaction通常是为了执行major compaction,原因有三,其一是因为很多业务担心自动major compaction影响读写性能,因此会选择低峰期手动触发;其二也有可能是用户在执行完alter操作之后希望立刻生效,执行手动触发major compaction;其三是HBase管理员发现硬盘容量不够的情况下手动触发major compaction删除大量过期数据;无论哪种触发动机,一旦手动触发,HBase会不做很多自动化检查,直接执行合并。

选择合适HFile合并
选择合适的文件进行合并是整个compaction的核心,因为合并文件的大小以及其当前承载的IO数直接决定了compaction的效果。最理想的情况是,这些文件承载了大量IO请求但是大小很小,这样compaction本身不会消耗太多IO,而且合并完成之后对读的性能会有显著提升。然而现实情况可能大部分都不会是这样,在0.96版本和0.98版本,分别提出了两种选择策略,在充分考虑整体情况的基础上选择最佳方案。无论哪种选择策略,都会首先对该Store中所有HFile进行一一排查,排除不满足条件的部分文件:

1. 排除当前正在执行compact的文件及其比这些文件更新的所有文件(SequenceId更大)

2. 排除某些过大的单个文件,如果文件大小大于hbase.hzstore.compaction.max.size(默认Long最大值),则被排除,否则会产生大量IO消耗


经过排除的文件称为候选文件,HBase接下来会再判断是否满足major compaction条件,如果满足,就会选择全部文件进行合并。判断条件有下面三条,只要满足其中一条就会执行major compaction:

1. 用户强制执行major compaction

2. 长时间没有进行compact(CompactionChecker的判断条件2)且候选文件数小于hbase.hstore.compaction.max(默认10)

3. Store中含有Reference文件,Reference文件是split region产生的临时文件,只是简单的引用文件,一般必须在compact过程中删除

选择合适HFile合并
选择合适的文件进行合并是整个compaction的核心,因为合并文件的大小以及其当前承载的IO数直接决定了compaction的效果。最理想的情况是,这些文件承载了大量IO请求但是大小很小,这样compaction本身不会消耗太多IO,而且合并完成之后对读的性能会有显著提升。然而现实情况可能大部分都不会是这样,在0.96版本和0.98版本,分别提出了两种选择策略,在充分考虑整体情况的基础上选择最佳方案。无论哪种选择策略,都会首先对该Store中所有HFile进行一一排查,排除不满足条件的部分文件:

1. 排除当前正在执行compact的文件及其比这些文件更新的所有文件(SequenceId更大)

2. 排除某些过大的单个文件,如果文件大小大于hbase.hzstore.compaction.max.size(默认Long最大值),则被排除,否则会产生大量IO消耗


经过排除的文件称为候选文件,HBase接下来会再判断是否满足major compaction条件,如果满足,就会选择全部文件进行合并。判断条件有下面三条,只要满足其中一条就会执行major compaction:

1. 用户强制执行major compaction

2. 长时间没有进行compact(CompactionChecker的判断条件2)且候选文件数小于hbase.hstore.compaction.max(默认10)

3. Store中含有Reference文件,Reference文件是split region产生的临时文件,只是简单的引用文件,一般必须在compact过程中删除


最新经典文章,欢迎关注公众号

————————————————


原文链接:https://blog.csdn.net/qq_42316200/article/details/103210837






本帖被以下淘专辑推荐:

没找到任何评论,期待你打破沉寂

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

推荐上一条 /2 下一条