分享

Flink实践:统计热门商品的TopN

nettman 2020-6-18 12:36:28 发表于 实操演练 [显示全部楼层] 回帖奖励 阅读模式 关闭右栏 1 4389
本帖最后由 nettman 于 2020-6-18 12:36 编辑

问题导读
1.本文涉及哪些技术点?
2.如何实现统计热门商品的TopN?
3.如何实现窗口排序?



文章目录

    一、需求说明

        1、以案例驱动理解

    二、技术点

    三、代码实现(一)

        1、调用底层的Process(可做类似map的操作),将Json字符串解析成MyBehavior对象

        2、提取EventTime,转换成Timestamp格式,生成WaterMark

        3、按照指定事件分组

        4、把分好组的数据,划分窗口:假设窗口总长10分钟, 步长1分钟滑动一次

        5、窗口内的数据进行聚合,拿出窗口Star时间和窗口End时间

    四、定义的单独类MyBehavior 和 ItemViewCount

        1、MyBehavior

        2、ItemViewCount

    五、最终结果

    六、代码实现(二) 更高级

        1、单独类 MyWindowAggFunction

        2、单独类 MyWindowFunction

   七、对聚合好的窗口内数据排序

        1、分组

        2、排序


一、需求说明
统计一定时间段内的,热门商品/品牌TopN

1、以案例驱动理解


数据:
[mw_shl_code=bash,true]
{"userId": "u001", "itemId": "p1001", "categoryId": "c11", type: "pv", "timestamp": "2020-03-08 11:11:11"}
{"userId": "u002", "itemId": "p1001", "categoryId": "c11", type: "pv", "timestamp": "2020-03-08 11:11:11"}
{"userId": "u003", "itemId": "p1001", "categoryId": "c11", type: "pv", "timestamp": "2020-03-08 11:11:11"}
{"userId": "u003", "itemId": "p1001", "categoryId": "c11", type: "cart", "timestamp": "2020-03-08 11:11:11"}
{"userId": "u011", "itemId": "p2222", "categoryId": "c22", type: "pv", "timestamp": "2020-03-08 11:11:11"}
{"userId": "u012", "itemId": "p2222", "categoryId": "c22", type: "pv", "timestamp": "2020-03-08 11:11:11"}
{"userId": "u012", "itemId": "p2222", "categoryId": "c22", type: "pv", "timestamp": "2020-03-08 11:12:01"}
{"userId": "u001", "itemId": "p1001", "categoryId": "c11", type: "pv", "timestamp": "2020-03-08 11:12:01"}
{"userId": "u002", "itemId": "p1001", "categoryId": "c11", type: "pv", "timestamp": "2020-03-08 11:12:01"}
{"userId": "u003", "itemId": "p1001", "categoryId": "c11", type: "pv", "timestamp": "2020-03-08 11:12:01"}
{"userId": "u003", "itemId": "p1001", "categoryId": "c11", type: "cart", "timestamp": "2020-03-08 11:12:01"}
{"userId": "u011", "itemId": "p2222", "categoryId": "c22", type: "pv", "timestamp": "2020-03-08 11:12:01"}
{"userId": "u012", "itemId": "p2222", "categoryId": "c22", type: "pv", "timestamp": "2020-03-08 11:12:01"}
{"userId": "u011", "itemId": "p2222", "categoryId": "c22", type: "pv", "timestamp": "2020-03-08 11:13:01"}[/mw_shl_code]

二、技术点

Flink的EventTime

Flink的滑动窗口(滚动窗口也可以完成 ,但是生成的结果太突兀,没有平滑性)

Flink的定时器

三、代码实现(一)

使用window.apply( )方法 → 见第5步

窗口触发时,会执行一次apply,相当于对窗口中的全量数据进行计算(全部拿出在计算)

窗口不触发,会把数据缓存在内存中,当窗口特别长时,那么这种apply不太好

1、调用底层的Process(可做类似map的操作),将Json字符串解析成MyBehavior对象

[mw_shl_code=java,true]
import com.alibaba.fastjson.JSON;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;

public class HotGoodsTopN {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 选择EventTime作为Flink的时间
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        // 设置checkPoint时间
        env.enableCheckpointing(60000);
        // 设置并行度
        env.setParallelism(1);

        DataStreamSource<String> lines = env.socketTextStream("linux01", 8888);

        SingleOutputStreamOperator<MyBehavior> process = lines.process(new ProcessFunction<String, MyBehavior>() {
            @Override
            public void processElement(String input, Context ctx, Collector<MyBehavior> out) throws Exception {

                try {
                    // FastJson 会自动把时间解析成long类型的TimeStamp
                    MyBehavior behavior = JSON.parseObject(input, MyBehavior.class);
                    out.collect(behavior);
                } catch (Exception e) {
                    e.printStackTrace();
                    //TODO 记录出现异常的数据
                }
            }
        });[/mw_shl_code]

2、提取EventTime,转换成Timestamp格式,生成WaterMark

[mw_shl_code=java,true] //      设定延迟时间
        SingleOutputStreamOperator<MyBehavior> behaviorDSWithWaterMark =
                process.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<MyBehavior>(Time.seconds(0)) {
                    @Override
                    public long extractTimestamp(MyBehavior element) {
                        return element.timestamp;
                    }
                });[/mw_shl_code]

3、按照指定事件分组

[mw_shl_code=java,true]
//  某个商品,在窗口时间内,被(点击、购买、添加购物车、收藏)了多少次
KeyedStream<MyBehavior, Tuple> keyed = behaviorDSWithWaterMark.keyBy("itemId", "type");[/mw_shl_code]

4、把分好组的数据,划分窗口:假设窗口总长10分钟, 步长1分钟滑动一次

[mw_shl_code=java,true]WindowedStream<MyBehavior, Tuple, TimeWindow> window =
                keyed.window(SlidingEventTimeWindows.of(Time.minutes(10), Time.minutes(1)));[/mw_shl_code]

5、窗口内的数据进行聚合,拿出窗口Star时间和窗口End时间

[mw_shl_code=java,true]
//参数:输入的数据类, 输出的数据类,分组字段tuple, 窗口对象TimeWindow
SingleOutputStreamOperator<ItemViewCount> result = window.apply(new WindowFunction<MyBehavior, ItemViewCount,
                Tuple, TimeWindow>() {
            @Override
            public void apply(Tuple tuple, TimeWindow window, Iterable<MyBehavior> input,
                              Collector<ItemViewCount> out) throws Exception {
                //拿出分组的字段
                String itemId = tuple.getField(0);
                String type = tuple.getField(1);

                //拿出窗口的起始和结束时间
                long start = window.getStart();
                long end = window.getEnd();

                // 编写累加的逻辑
                int count = 0;

                for (MyBehavior myBehavior : input) {
                    count += 1;
                }

                //输出结果
                out.collect(ItemViewCount.of(itemId, type, start, end, count));
            }
        });

        result.print();
        env.execute("HotGoodsTopN");

    }
}[/mw_shl_code]

四、定义的单独类MyBehavior 和 ItemViewCount
  • MyBehavior → 解析Json字符串后生成的JavaBean
  • ItemViewCount → 最后结果输出的格式类



1、MyBehavior

[mw_shl_code=java,true]
import java.sql.Timestamp;

public class MyBehavior {
    public String userId;           // 用户ID
    public String itemId;           // 商品ID
    public String categoryId;       // 商品类目ID
    public String type;             // 用户行为, 包括("pv", "buy", "cart", "fav")
    public long timestamp;          // 行为发生的时间戳,单位秒
    public long counts = 1;

    public static MyBehavior of(String userId, String itemId, String categoryId, String type, long timestamp) {
        MyBehavior behavior = new MyBehavior();
        behavior.userId = userId;
        behavior.itemId = itemId;
        behavior.categoryId = categoryId;
        behavior.type = type;
        behavior.timestamp = timestamp;
        return behavior;
    }

    public static MyBehavior of(String userId, String itemId, String categoryId, String type, long timestamp,
                                long counts) {
        MyBehavior behavior = new MyBehavior();
        behavior.userId = userId;
        behavior.itemId = itemId;
        behavior.categoryId = categoryId;
        behavior.type = type;
        behavior.timestamp = timestamp;
        behavior.counts = counts;
        return behavior;
    }

    @Override
    public String toString() {
        return "MyBehavior{" + "userId='" + userId + '\'' + ", itemId='" + itemId + '\''
                + ", categoryId='" + categoryId + '\'' + ", type='" + type + '\''
                + ", timestamp=" + timestamp + "," + new Timestamp(timestamp)
                + "counts=" + counts + '}';
    }

    public String getUserId() {
        return userId;
    }
    public String getItemId() {
        return itemId;
    }
    public String getCategoryId() {
        return categoryId;
    }
    public String getType() {
        return type;
    }
    public long getTimestamp() {
        return timestamp;
    }
    public long getCounts() {
        return counts;
    }
}[/mw_shl_code]

2、ItemViewCount

[mw_shl_code=java,true]
import java.sql.Timestamp;

public class ItemViewCount {
    public String itemId;     // 商品ID
    public String type;     // 事件类型
    public long windowStart;  // 窗口开始时间戳
    public long windowEnd;  // 窗口结束时间戳
    public long viewCount;  // 商品的点击量

    public static ItemViewCount of(String itemId, String type, long windowStart, long windowEnd, long viewCount) {
        ItemViewCount result = new ItemViewCount();
        result.itemId = itemId;
        result.type = type;
        result.windowStart = windowStart;
        result.windowEnd = windowEnd;
        result.viewCount = viewCount;
        return result;
    }

    @Override
    public String toString() {
        return "{" +
                "itemId='" + itemId + '\'' +
                "type='" + type + '\'' +
                ", windowStart=" + windowStart + " , " + new Timestamp(windowStart) +
                ", windowEnd=" + windowEnd + " , " + new Timestamp(windowEnd) +
                ", viewCount=" + viewCount +
                '}';
    }
}[/mw_shl_code]

五、最终结果
  • 1分钟窗口一滑动一统计
  • 11:11:12:01统计一次之前的,11:13:01统计一次之前的


[mw_shl_code=java,true]
{itemId='p1001'type='pv', windowStart=1583636520000 , 2020-03-08 11:02:00.0, windowEnd=1583637120000 , 2020-03-08 11:12:00.0, viewCount=3}
{itemId='p1001'type='cart', windowStart=1583636520000 , 2020-03-08 11:02:00.0, windowEnd=1583637120000 , 2020-03-08 11:12:00.0, viewCount=1}
{itemId='p2222'type='pv', windowStart=1583636520000 , 2020-03-08 11:02:00.0, windowEnd=1583637120000 , 2020-03-08 11:12:00.0, viewCount=2}

{itemId='p1001'type='cart', windowStart=1583636580000 , 2020-03-08 11:03:00.0, windowEnd=1583637180000 , 2020-03-08 11:13:00.0, viewCount=2}
{itemId='p1001'type='pv', windowStart=1583636580000 , 2020-03-08 11:03:00.0, windowEnd=1583637180000 , 2020-03-08 11:13:00.0, viewCount=6}
{itemId='p2222'type='pv', windowStart=1583636580000 , 2020-03-08 11:03:00.0, windowEnd=1583637180000 , 2020-03-08 11:13:00.0, viewCount=5}[/mw_shl_code]

六、代码实现(二)
优化点:在窗口内增量聚合 (来一个加一个,内存中只保存一个数字而已)

[mw_shl_code=java,true]       /**  使用这种aggregate聚合方法:
         *
         *    public <ACC, V, R> SingleOutputStreamOperator<R> aggregate(
         *       AggregateFunction<T, ACC, V> aggFunction,
         *       WindowFunction<V, R, K, W> windowFunction) {}
         */
       SingleOutputStreamOperator<ItemViewCount> windowAggregate = window.aggregate(new MyWindowAggFunction(),
                new MyWindowFunction());[/mw_shl_code]

1、单独类 MyWindowAggFunction
拿到聚合字段(MyBehavior中counts)

三个泛型:

  • 第一个输入的类型

  • 第二个计数/累加器的类型

  • 第三个输出的数据类型



[mw_shl_code=bash,true]//
    public static class MyWindowAggFunction implements AggregateFunction<MyBehavior, Long, Long> {

        //初始化一个计数器
        @Override
        public Long createAccumulator() {
            return 0L;
        }

        //每输入一条数据就调用一次add方法
        @Override
        public Long add(MyBehavior input, Long accumulator) {
            return accumulator + input.counts;
        }

        @Override
        public Long getResult(Long accumulator) {
            return accumulator;
        }

        //只针对SessionWindow有效,对应滚动窗口、滑动窗口不会调用此方法
        @Override
        public Long merge(Long a, Long b) {
            return null;
        }
    }[/mw_shl_code]

2、单独类 MyWindowFunction

拿到窗口的开始时间和结束时间,拿出分组字段

传入4个泛型:

  • 第一个:输入的数据类型(Long类型的次数),也就是 MyWindowAggFunction中聚合后的结果值
  • 第二个:输出的数据类型(ItemViewCount)
  • 第三个:分组的key(分组的字段)
  • 第四个:窗口对象(起始时间、结束时间)



[mw_shl_code=java,true]
public static class MyWindowFunction implements WindowFunction<Long, ItemViewCount, Tuple, TimeWindow> {

        @Override
        public void apply(Tuple tuple, TimeWindow window, Iterable<Long> input, Collector<ItemViewCount> out) throws Exception {
            String itemId = tuple.getField(0);
            String type = tuple.getField(1);

            long windowStart = window.getStart();
            long windowEnd = window.getEnd();

            //窗口集合的结果
            Long aLong = input.iterator().next();

            //输出数据
            out.collect(ItemViewCount.of(itemId, type, windowStart, windowEnd, aLong));
        }[/mw_shl_code]

七、对聚合好的窗口内数据排序
按照窗口的start、end进行分组,将窗口相同的数据进行排序
必须是在同一时间段的窗口
1、分组

[mw_shl_code=java,true]
KeyedStream<ItemViewCount, Tuple> soredKeyed = windowAggregate.keyBy("type", "windowStart",
                "windowEnd");[/mw_shl_code]

2、排序

[mw_shl_code=java,true]
SingleOutputStreamOperator<List<ItemViewCount>> sored = soredKeyed.process(new KeyedProcessFunction<Tuple, ItemViewCount, List<ItemViewCount>>() {
                  private transient ValueState<List<ItemViewCount>> valueState;

                  // 要把这个时间段的所有的ItemViewCount作为中间结果聚合在一块,引入ValueState
                  @Override
                  public void open(Configuration parameters) throws Exception {
                      ValueStateDescriptor<List<ItemViewCount>> VSDescriptor =
                              new ValueStateDescriptor<>("list-state",
                                      TypeInformation.of(new TypeHint<List<ItemViewCount>>() {
                                      })
                              );

                      valueState = getRuntimeContext().getState(VSDescriptor);

                  }

                  //更新valueState 并注册定时器
                  @Override
                  public void processElement(ItemViewCount input, Context ctx, Collector<List<ItemViewCount>> out) throws Exception {
                      List<ItemViewCount> buffer = valueState.value();
                      if (buffer == null) {
                          buffer = new ArrayList<>();
                      }
                      buffer.add(input);
                      valueState.update(buffer);
                      //注册定时器,当为窗口最后的时间时,通过加1触发定时器
                      ctx.timerService().registerEventTimeTimer(input.windowEnd + 1);

                  }

                  // 做排序操作
                  @Override
                  public void onTimer(long timestamp, OnTimerContext ctx, Collector<List<ItemViewCount>> out) throws Exception {

                      //将ValueState中的数据取出来
                      List<ItemViewCount> buffer = valueState.value();
                      buffer.sort(new Comparator<ItemViewCount>() {
                          @Override
                          public int compare(ItemViewCount o1, ItemViewCount o2) {
                              //按照倒序,转成int类型
                              return -(int) (o1.viewCount - o2.viewCount);
                          }
                      });
                      valueState.update(null);
                      out.collect(buffer);
                  }
              });
      sored.print();
      env.execute("HotGoodsTopNAdv");
  }
}[/mw_shl_code]

加微信w3aboutyun,获取更多资源



领取100本书+1T资源
http://www.aboutyun.com/forum.php?mod=viewthread&tid=26480

大数据5个项目视频
http://www.aboutyun.com/forum.php?mod=viewthread&tid=25235

名企资源、名企面试题、最新BAT面试题、专题面试题等资源汇总
https://www.aboutyun.com/forum.php?mod=viewthread&tid=27732

原文链接:
https://mp.weixin.qq.com/s/JFdxspVMs1061O8_BpniJA



加微信w3aboutyun,可拉入技术爱好者群

已有(1)人评论

跳转到指定楼层
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

推荐上一条 /2 下一条