分享

大数据技术之Kafka系统入门(三):Kafka API

问题导读

1. 消息发送包含哪些流程?
2.kafka同步发送的含义是什么?
3.Consumer消费数据该如何保证?

上一篇:
大数据技术之Kafka系统入门(二):Kafka架构深入
https://www.aboutyun.com/forum.php?mod=viewthread&tid=29597

4.1 Producer API
4.1.1 消息发送流程
Kafka的Producer发送消息采用的是异步发送的方式。在消息发送的过程中,涉及到了两个线程——main线程和Sender线程,以及一个线程共享变量——RecordAccumulator。main线程将消息发送给RecordAccumulator,Sender线程不断从RecordAccumulator中拉取消息发送到Kafka broker。


1.png


相关参数:
batch.size:只有数据积累到batch.size之后,sender才会发送数据。
linger.ms:如果数据迟迟未达到batch.size,sender等待linger.time之后就会发送数据。


4.1.2 异步发送API
1)导入依赖

  1. <dependency>
  2. <groupId>org.apache.kafka</groupId>
  3. <artifactId>kafka-clients</artifactId>
  4. <version>0.11.0.0</version>
  5. </dependency>
复制代码
2)编写代码
需要用到的类:
KafkaProducer:需要创建一个生产者对象,用来发送数据
ProducerConfig:获取所需的一系列配置参数
ProducerRecord:每条数据都要封装成一个ProducerRecord对象
1.不带回调函数的API

  1. package com.atguigu.kafka;
  2. import org.apache.kafka.clients.producer.*;
  3. import java.util.Properties;
  4. import java.util.concurrent.ExecutionException;
  5. public class CustomProducer {
  6.     public static void main(String[] args) throws ExecutionException, InterruptedException {
  7.         Properties props = new Properties();
  8.         props.put("bootstrap.servers", "hadoop102:9092");//kafka集群,broker-list
  9.         props.put("acks", "all");
  10.         props.put("retries", 1);//重试次数
  11.         props.put("batch.size", 16384);//批次大小
  12.         props.put("linger.ms", 1);//等待时间
  13.         props.put("buffer.memory", 33554432);//RecordAccumulator缓冲区大小
  14.         props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
  15.         props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
  16.         Producer<String, String> producer = new KafkaProducer<>(props);
  17.         for (int i = 0; i < 100; i++) {
  18.             producer.send(new ProducerRecord<String, String>("first", Integer.toString(i), Integer.toString(i)));
  19.         }
  20.         producer.close();
  21.     }
  22. }
复制代码
2.带回调函数的API
回调函数会在producer收到ack时调用,为异步调用,该方法有两个参数,分别是RecordMetadata和Exception,如果Exception为null,说明消息发送成功,如果Exception不为null,说明消息发送失败。
注意:消息发送失败会自动重试,不需要我们在回调函数中手动重试。

  1. package com.atguigu.kafka;
  2. import org.apache.kafka.clients.producer.*;
  3. import java.util.Properties;
  4. import java.util.concurrent.ExecutionException;
  5. public class CustomProducer {
  6.     public static void main(String[] args) throws ExecutionException, InterruptedException {
  7.         Properties props = new Properties();
  8.         props.put("bootstrap.servers", "hadoop102:9092");//kafka集群,broker-list
  9.         props.put("acks", "all");
  10.         props.put("retries", 1);//重试次数
  11.         props.put("batch.size", 16384);//批次大小
  12.         props.put("linger.ms", 1);//等待时间
  13.         props.put("buffer.memory", 33554432);//RecordAccumulator缓冲区大小
  14.         props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
  15.         props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
  16.         Producer<String, String> producer = new KafkaProducer<>(props);
  17.         for (int i = 0; i < 100; i++) {
  18.             producer.send(new ProducerRecord<String, String>("first", Integer.toString(i), Integer.toString(i)), new Callback() {
  19.                 //回调函数,该方法会在Producer收到ack时调用,为异步调用
  20.                 @Override
  21.                 public void onCompletion(RecordMetadata metadata, Exception exception) {
  22.                     if (exception == null) {
  23.                         System.out.println("success->" + metadata.offset());
  24.                     } else {
  25.                         exception.printStackTrace();
  26.                     }
  27.                 }
  28.             });
  29.         }
  30.         producer.close();
  31.     }
  32. }
复制代码


4.1.3 同步发送API
        同步发送的意思就是,一条消息发送之后,会阻塞当前线程,直至返回ack。
由于send方法返回的是一个Future对象,根据Futrue对象的特点,我们也可以实现同步发送的效果,只需在调用Future对象的get方发即可。


  1. package com.atguigu.kafka;
  2. import org.apache.kafka.clients.producer.KafkaProducer;
  3. import org.apache.kafka.clients.producer.Producer;
  4. import org.apache.kafka.clients.producer.ProducerRecord;
  5. import java.util.Properties;
  6. import java.util.concurrent.ExecutionException;
  7. public class CustomProducer {
  8.     public static void main(String[] args) throws ExecutionException, InterruptedException {
  9.         Properties props = new Properties();
  10.         props.put("bootstrap.servers", "hadoop102:9092");//kafka集群,broker-list
  11.         props.put("acks", "all");
  12.         props.put("retries", 1);//重试次数
  13.         props.put("batch.size", 16384);//批次大小
  14.         props.put("linger.ms", 1);//等待时间
  15.         props.put("buffer.memory", 33554432);//RecordAccumulator缓冲区大小
  16.         props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
  17.         props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
  18.         Producer<String, String> producer = new KafkaProducer<>(props);
  19.         for (int i = 0; i < 100; i++) {
  20.             producer.send(new ProducerRecord<String, String>("first", Integer.toString(i), Integer.toString(i))).get();
  21.         }
  22.         producer.close();
  23.     }
  24. }
复制代码


4.2 Consumer API
Consumer消费数据时的可靠性是很容易保证的,因为数据在Kafka中是持久化的,故不用担心数据丢失问题。
由于consumer在消费过程中可能会出现断电宕机等故障,consumer恢复后,需要从故障前的位置的继续消费,所以consumer需要实时记录自己消费到了哪个offset,以便故障恢复后继续消费。
所以offset的维护是Consumer消费数据是必须考虑的问题。

4.2.1 手动提交offset
1)导入依赖

  1. <dependency>
  2. <groupId>org.apache.kafka</groupId>
  3. <artifactId>kafka-clients</artifactId>
  4. <version>0.11.0.0</version>
  5. </dependency>
复制代码
2)编写代码
需要用到的类:
KafkaConsumer:需要创建一个消费者对象,用来消费数据
ConsumerConfig:获取所需的一系列配置参数
ConsuemrRecord:每条数据都要封装成一个ConsumerRecord对象

  1. package com.atguigu.kafka;
  2. import org.apache.kafka.clients.consumer.ConsumerRecord;
  3. import org.apache.kafka.clients.consumer.ConsumerRecords;
  4. import org.apache.kafka.clients.consumer.KafkaConsumer;
  5. import java.util.Arrays;
  6. import java.util.Properties;
  7. public class CustomConsumer {
  8.     public static void main(String[] args) {
  9.         Properties props = new Properties();
  10.         props.put("bootstrap.servers", "hadoop102:9092");
  11.         props.put("group.id", "test");//消费者组,只要group.id相同,就属于同一个消费者组
  12.         props.put("enable.auto.commit", "false");//自动提交offset
  13.       
  14.         props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
  15.         props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
  16.         KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
  17.         consumer.subscribe(Arrays.asList("first"));
  18.         while (true) {
  19.             ConsumerRecords<String, String> records = consumer.poll(100);
  20.             for (ConsumerRecord<String, String> record : records) {
  21.                 System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
  22.             }
  23.             consumer.commitSync();
  24.         }
  25.     }
  26. }
复制代码
3)代码分析:
手动提交offset的方法有两种:分别是commitSync(同步提交)和commitAsync(异步提交)。两者的相同点是,都会将本次poll的一批数据最高的偏移量提交;不同点是,commitSync会失败重试,一直到提交成功(如果由于不可恢复原因导致,也会提交失败);而commitAsync则没有失败重试机制,故有可能提交失败。

4)数据重复消费问题


1.png

4.2.2 自动提交offset
为了使我们能够专注于自己的业务逻辑,Kafka提供了自动提交offset的功能。
自动提交offset的相关参数:
enable.auto.commit:是否开启自动提交offset功能
auto.commit.interval.ms:自动提交offset的时间间隔
以下为自动提交offset的代码:

  1. package com.atguigu.kafka;
  2. import org.apache.kafka.clients.consumer.ConsumerRecord;
  3. import org.apache.kafka.clients.consumer.ConsumerRecords;
  4. import org.apache.kafka.clients.consumer.KafkaConsumer;
  5. import java.util.Arrays;
  6. import java.util.Properties;
  7. public class CustomConsumer {
  8.     public static void main(String[] args) {
  9.         Properties props = new Properties();
  10.         props.put("bootstrap.servers", "hadoop102:9092");
  11.         props.put("group.id", "test");
  12.         props.put("enable.auto.commit", "true");
  13.         props.put("auto.commit.interval.ms", "1000");
  14.         props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
  15.         props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
  16.         KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
  17.         consumer.subscribe(Arrays.asList("first"));
  18.         while (true) {
  19.             ConsumerRecords<String, String> records = consumer.poll(100);
  20.             for (ConsumerRecord<String, String> record : records)
  21.                 System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
  22.         }
  23.     }
  24. }
复制代码


4.3 自定义Interceptor

4.3.1 拦截器原理
Producer拦截器(interceptor)是在Kafka 0.10版本被引入的,主要用于实现clients端的定制化控制逻辑。
对于producer而言,interceptor使得用户在消息发送前以及producer回调逻辑前有机会对消息做一些定制化需求,比如修改消息等。同时,producer允许用户指定多个interceptor按序作用于同一条消息从而形成一个拦截链(interceptor chain)。Intercetpor的实现接口是org.apache.kafka.clients.producer.ProducerInterceptor,其定义的方法包括:
(1)configure(configs)
获取配置信息和初始化数据时调用。
(2)onSend(ProducerRecord):
该方法封装进KafkaProducer.send方法中,即它运行在用户主线程中。Producer确保在消息被序列化以及计算分区前调用该方法。用户可以在该方法中对消息做任何操作,但最好保证不要修改消息所属的topic和分区,否则会影响目标分区的计算。
(3)onAcknowledgement(RecordMetadata, Exception):
该方法会在消息从RecordAccumulator成功发送到Kafka Broker之后,或者在发送过程中失败时调用。并且通常都是在producer回调逻辑触发之前。onAcknowledgement运行在producer的IO线程中,因此不要在该方法中放入很重的逻辑,否则会拖慢producer的消息发送效率。
(4)close:
关闭interceptor,主要用于执行一些资源清理工作
如前所述,interceptor可能被运行在多个线程中,因此在具体实现时用户需要自行确保线程安全。另外倘若指定了多个interceptor,则producer将按照指定顺序调用它们,并仅仅是捕获每个interceptor可能抛出的异常记录到错误日志中而非在向上传递。这在使用过程中要特别留意。


4.3.2 拦截器案例
1)需求:
实现一个简单的双interceptor组成的拦截链。第一个interceptor会在消息发送前将时间戳信息加到消息value的最前部;第二个interceptor会在消息发送后更新成功发送消息数或失败发送消息数。


1.png
2)案例实操
(1)增加时间戳拦截器

  1. package com.atguigu.kafka.interceptor;
  2. import java.util.Map;
  3. import org.apache.kafka.clients.producer.ProducerInterceptor;
  4. import org.apache.kafka.clients.producer.ProducerRecord;
  5. import org.apache.kafka.clients.producer.RecordMetadata;
  6. public class TimeInterceptor implements ProducerInterceptor<String, String> {
  7.         @Override
  8.         public void configure(Map<String, ?> configs) {
  9.         }
  10.         @Override
  11.         public ProducerRecord<String, String> onSend(ProducerRecord<String, String> record) {
  12.                 // 创建一个新的record,把时间戳写入消息体的最前部
  13.                 return new ProducerRecord(record.topic(), record.partition(), record.timestamp(), record.key(),
  14.                                 System.currentTimeMillis() + "," + record.value().toString());
  15.         }
  16.         @Override
  17.         public void onAcknowledgement(RecordMetadata metadata, Exception exception) {
  18.         }
  19.         @Override
  20.         public void close() {
  21.         }
  22. }
复制代码
(2)统计发送消息成功和发送失败消息数,并在producer关闭时打印这两个计数器

  1. package com.atguigu.kafka.interceptor;
  2. import java.util.Map;
  3. import org.apache.kafka.clients.producer.ProducerInterceptor;
  4. import org.apache.kafka.clients.producer.ProducerRecord;
  5. import org.apache.kafka.clients.producer.RecordMetadata;
  6. public class CounterInterceptor implements ProducerInterceptor<String, String>{
  7.     private int errorCounter = 0;
  8.     private int successCounter = 0;
  9.         @Override
  10.         public void configure(Map<String, ?> configs) {
  11.                
  12.         }
  13.         @Override
  14.         public ProducerRecord<String, String> onSend(ProducerRecord<String, String> record) {
  15.                  return record;
  16.         }
  17.         @Override
  18.         public void onAcknowledgement(RecordMetadata metadata, Exception exception) {
  19.                 // 统计成功和失败的次数
  20.         if (exception == null) {
  21.             successCounter++;
  22.         } else {
  23.             errorCounter++;
  24.         }
  25.         }
  26.         @Override
  27.         public void close() {
  28.         // 保存结果
  29.         System.out.println("Successful sent: " + successCounter);
  30.         System.out.println("Failed sent: " + errorCounter);
  31.         }
  32. }
复制代码
(3)producer主程序

  1. package com.atguigu.kafka.interceptor;
  2. import java.util.ArrayList;
  3. import java.util.List;
  4. import java.util.Properties;
  5. import org.apache.kafka.clients.producer.KafkaProducer;
  6. import org.apache.kafka.clients.producer.Producer;
  7. import org.apache.kafka.clients.producer.ProducerConfig;
  8. import org.apache.kafka.clients.producer.ProducerRecord;
  9. public class InterceptorProducer {
  10.         public static void main(String[] args) throws Exception {
  11.                 // 1 设置配置信息
  12.                 Properties props = new Properties();
  13.                 props.put("bootstrap.servers", "hadoop102:9092");
  14.                 props.put("acks", "all");
  15.                 props.put("retries", 0);
  16.                 props.put("batch.size", 16384);
  17.                 props.put("linger.ms", 1);
  18.                 props.put("buffer.memory", 33554432);
  19.                 props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
  20.                 props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
  21.                
  22.                 // 2 构建拦截链
  23.                 List<String> interceptors = new ArrayList<>();
  24.                 interceptors.add("com.atguigu.kafka.interceptor.TimeInterceptor");         interceptors.add("com.atguigu.kafka.interceptor.CounterInterceptor");
  25.                 props.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG, interceptors);
  26.                  
  27.                 String topic = "first";
  28.                 Producer<String, String> producer = new KafkaProducer<>(props);
  29.                
  30.                 // 3 发送消息
  31.                 for (int i = 0; i < 10; i++) {
  32.                         
  33.                     ProducerRecord<String, String> record = new ProducerRecord<>(topic, "message" + i);
  34.                     producer.send(record);
  35.                 }
  36.                  
  37.                 // 4 一定要关闭producer,这样才会调用interceptor的close方法
  38.                 producer.close();
  39.         }
  40. }
复制代码


3)测试
(1)在kafka上启动消费者,然后运行客户端java程序。

[atguigu@hadoop102 kafka]$ bin/kafka-console-consumer.sh \
--bootstrap-server hadoop102:9092 --from-beginning --topic first

1501904047034,message0
1501904047225,message1
1501904047230,message2
1501904047234,message3
1501904047236,message4
1501904047240,message5
1501904047243,message6
1501904047246,message7
1501904047249,message8
1501904047252,message9





获取更多资源:
领取100本书+1T资源
http://www.aboutyun.com/forum.php?mod=viewthread&tid=26480

大数据5个项目视频
http://www.aboutyun.com/forum.php?mod=viewthread&tid=25235

名企资源、名企面试题、最新BAT面试题、专题面试题等资源汇总
https://www.aboutyun.com/forum.php?mod=viewthread&tid=27732


名企资源、名企面试题、最新BAT面试题、专题面试题等资源汇总
https://www.aboutyun.com/forum.php?mod=viewthread&tid=27732


加微信w3aboutyun,可拉入技术爱好者群

没找到任何评论,期待你打破沉寂

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

推荐上一条 /2 下一条