以这些年业界对 Capital One 的解读风向变化为例:晋梅表示,因为短短几十年 Capital One 就跻身全美头部银行,很多人给它贴上了“大数据风控先驱”的标签,而后冒出来很多主打“大数据风控”的公司,号称他们的风控模型里用了成千上万个特征,智能到恨不得每分每秒都在自我迭代,甚至可以连模型带系数从 A 银行直接迁移到B银行去帮后者快速冷启动。但随着后期 Capital One 遇上股价波动、业务调整,业界同样着急下结论——表示“Capital One 走下神坛”。
那么,事实果真如此吗?晋梅解释道,“成就 Capital One 的肯定不是所谓的‘大数据风控’,Capital One 也没有什么秘密武器,只是一直遵循着‘提出问题、分析问题、解决问题’的结构性思维方式,让数据恰如其分地发挥价值罢了。”
据她介绍,在日常的业务推进过程中,Capital One 的算法模型团队会频繁和业务反复沟通金融产品要素、目标客群、推广渠道、营销策略、市场环境和宏观趋势。双方不仅对业务的历史、现状、未来规划都有充分共识,还会对建模样本的选择策略、模型的框架、建模的方法、模型适用性、模型的验证、上线后的监控、可能会出现哪些问题、出现这些问题后的应对预案等信息去做充分的讨论——包括对入模的原始数据、衍生特征的业务价值和投入成本客观评估,以及对关键变量的系数从符号到数值是否合理、映射到业务上代表着什么等问题逐一明确。
“脱离了具体业务和场景的模型不但很难放大数据的价值、甚至可能带来毁灭性的灾难。”晋梅强调,“在 Capital One 工作这么多年给我的启示就是,永远不要在没梳理清楚‘产品 - 营销 - 运营’闭环的业务逻辑和关键问题之前,盲目扎入漫无边际的数据海洋;不预设问题、说不明白要验证什么的建模和分析,都是低效甚至无效的。“
比如,建模同学 M 接到需求说要给 A 产品做信用评分卡,他兢兢业业找出来 A 产品的历史数据、认认真真建模和回测,感觉都没问题了就交付给策略同学 P 使用。没过多久,策略同学 P 就抱怨 M 的评分卡不好使,时灵时不灵。
后来才发现,业务团队为了完成增长 KPI,自行调整了 A 产品的受众群体,把过去只聚焦在优质客群的 A 产品推向基数更大但信用资质略差的客群。为此,他们新增了 A 产品的进件合作渠道,在展示坑位、流量费用等方面也都做了调整。但是,在推进这些尝试的过程中,他们只使用了过去优质客群的历史表现数据,自然,M 同学原来建立的评分卡的有效性就非常有限。
再比如,在部门协作过程中,Capital One 模型团队在每一次对模型进行调整时,都会和业务充分沟通调整的原因和方式,调整前后的对比,新模型的优势、短板和局限性;反之,业务团队每一次做业务策略调整时也会把调整背景、调整方向、预判影响等信息同步给模型团队。并且,在整个流程中,双方不是对立的状态,也不是各自扛各自的指标,而是一起扛业务最终的收益。
此外,Capital One 在培训体系中还有一个比较有意思的做法,是在内部培训中设立了一门叫做“COF Lessons Learned”的课程。这是一门不断积累案例的培训,积累的都是公司付出过代价、在践行数据驱动业务的道路上实实在在踩过的“坑”。而培训的老师,首选是那些曾亲身参与和经历过这些“坑”的同事、尤其是负责人。案例的内容很丰富,包括对这些项目的业务背景、入坑复盘,梳理当初的思路是什么、为什么会出现问题、是哪个点没有考虑清楚、或者沟通上不够顺畅,最后导致了什么样的业务结果等等。
并且,为了让每一位员工清醒认识数据中既有真相、也有盲区,模型会揭示规律、也会制造错觉,Capital One 还有另一门叫做“Statistical Pitfalls”的内训课,专门讲述各类统计模型和数据分析在支撑业务决策的应用过程中,可能存在的局限性和常见的误区。
在这样的背景下,企业需要对数据有客观清醒的认知:首先,数据作为关键生产要素,的确能够给企业带来竞争力提升;但是,数据又不是万能的,它解决不了根本的业务模式问题;另一方面,数据驱动文化的构建、数据思维的培养并非一朝一夕,即便是像 Capital One 这样曾经被“封神”的公司,它的文化价值观也是在不断跌进去、爬出来,再跌进去、爬出来的过程中反复总结和打磨出来的。