分享

OpenStack环境下Hadoop2.2.0环境搭建

nettman 2014-3-18 12:42:53 发表于 安装配置 [显示全部楼层] 回帖奖励 阅读模式 关闭右栏 3 8926
我们都在物理机上搭建过Hadoop2.2.0,那么在
1.OpenStack是如何搭建Hadoop2.2.0?
2.openstack搭建hadoop2.2.0与在物理机上搭建环境,有什么异同?

加微信w3aboutyun,可拉入技术爱好者群

已有(4)人评论

跳转到指定楼层
nettman 发表于 2014-3-18 12:44:48
OpenStack目前已经成为众多云计算厂商搭建私有云的首选,众多学术机构也使用OpenStack搭建小规模测试环境供学生实验,在此分享使用OpenStack虚拟机搭建Hadoop2.2.0环境的过程。

1.VM环境准备

OpenStack版本:Folsom

a. 发起三台测试虚拟机,操作系统为 Ubuntu-12.04.2-x86_64

b. 配置IP地址,因为在F版本的OpenStack中,网络采用FlatDHCP模式使得虚拟机获得10.0.x.x段的Fixed IP地址,因此需要在虚拟机中配置/etc/hosts文件。

# vim /etc/hosts

127.0.0.1 localhost localhost.localdomain
10.0.0.225 hdp-server-01
10.0.1.19 hdp-server-02
10.0.1.17 hdp-server-03

c. 用root在每台机器上新建用户 yarn,使用同样的密码

# useradd -m -s /bin/bash yarn
# passwd yarn
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

d. 设置ssh无密码互访

#每台机器
$ su yarn
$ cd ~
$ ssh-keygen -t rsa
$ cat .ssh/id_rsa.pub >> .ssh/authorized_keys
#可以使用 ssh localhost 测试是否可以无密码访问
#相互之间可以将.ssh/authorized_keys的内容互拷到对方的.ssh/authorized_keys文件中。

e. 使用yarn账户,通过/etc/hosts文件中填写的主机名进行互访,并验证是否无密码登录。

因为采用64位的操作系统,因此不能够直接使用从官网下载的文件进行安装,必须手动编译。以下为编译过程:

2.编译Hadoop2.2.0

a. 配置JDK环境变量,假设jdk文件夹为/usr/java/jdk1.7.0_45

su yarn
# vim ~/.bashrc
# 追加写入

export JAVA_HOME=/usr/local/java/jdk1.7.0_45
export JRE_HOME=${JAVA_HOME}/jre
export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib
export PATH=${JAVA_HOME}/bin:$PATH

$source ~/.bashrc #使设置生效

b. 安装编译所需依赖

$sudo apt-get install g++ autoconf automake libtool cmake zlib1g-dev pkg-config libssl-dev

c. 安装protobuf 2.5.0

$cd $HOME/protobuf2.5.0

$./configure --prefix=/usr
$sudo make
$sudo make check
$sudo make install

$ protoc --version
libprotoc 2.5.0

d. 安装maven

$ sudo apt-get install maven

e. 开始编译

$ cd ~
$ tar -xzvf Hadoop-2.2.0-src.tar.gz
$ cd hadoop-2.2.0-src/
$ mvn package -Pdist,native -DskipTests -Dtar

编译大概耗时约30分钟,编译完后的文件在 hadoop-2.2.0-src/hadoop-dist/target 路径中。如果发起的虚拟机都是相同操作系统,编译只需要在一台机器上执行。

验证编译结果:

yarn@hdp-server-01:~$ $HOME/hadoop-2.2.0/bin/hadoop version
Hadoop 2.2.0
Subversion Unknown -r Unknown
Compiled by yarn on 2013-11-05T06:41Z
Compiled with protoc 2.5.0
From source with checksum 79e53ce7994d1628b240f09af91e1af4

This command was run using /home/yarn/hadoop-2.2.0/share/hadoop/common/hadoop-common-2.2.0.jar



yarn@hdp-server-01:~$ file $HOME/hadoop-2.2.0/lib/native/*
/home/yarn/hadoop-2.2.0/lib/native/libhadoop.a:        current ar archive
/home/yarn/hadoop-2.2.0/lib/native/libhadooppipes.a:  current ar archive
/home/yarn/hadoop-2.2.0/lib/native/libhadoop.so:      ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked, BuildID[sha1]=0xaa74c9d23bfe750f160412e4465b14c88cf1c650, not stripped
/home/yarn/hadoop-2.2.0/lib/native/libhadoop.so.1.0.0: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked, BuildID[sha1]=0xaa74c9d23bfe750f160412e4465b14c88cf1c650, not stripped
/home/yarn/hadoop-2.2.0/lib/native/libhadooputils.a:  current ar archive
/home/yarn/hadoop-2.2.0/lib/native/libhdfs.a:          current ar archive
/home/yarn/hadoop-2.2.0/lib/native/libhdfs.so:        ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked, BuildID[sha1]=0x89671252f3c5fb7034425e80c9d31ea67da75c4d, not stripped
/home/yarn/hadoop-2.2.0/lib/native/libhdfs.so.0.0.0:  ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked, BuildID[sha1]=0x89671252f3c5fb7034425e80c9d31ea67da75c4d, not stripped


3. 安装配置Hadoop2.2.0

假定各node角色划分如下:

hdp-server-01    resourcemanager, nodemanager, proxyserver,historyserver, datanode, namenode
hdp-server-02    datanode, nodemanager
hdp-server-03    datanode, nodemanager

a. 目录准备

mkdir -p ~/yarn_data/tmp
mkdir -p ~/yarn_data/mapred

b. 配置环境变量(追加至~/.bashrc)

#hadoop env
export HADOOP_HOME="$HOME/hadoop-2.2.0"
export HADOOP_PREFIX="$HADOOP_HOME/"
export YARN_HOME=$HADOOP_HOME
export HADOOP_MAPRED_HOME="$HADOOP_HOME"
export HADOOP_COMMON_HOME="$HADOOP_HOME"
export HADOOP_HDFS_HOME="$HADOOP_HOME"
export HADOOP_CONF_DIR="$HADOOP_HOME/etc/hadoop/"
export YARN_CONF_DIR=$HADOOP_CONF_DIR
export PATH="$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH"

c. 修改官方启动脚本

$ cd $YARN_HOME/libexec/
$ vim hadoop-config.sh
#修改第96行代码为:
export HADOOP_SLAVES="${HADOOP_CONF_DIR}/$1"
#保存退出vim

d. 设置配置文件

<!-- $YARN_HOME/etc/hadoop/core-site.xml -->

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
  <property>
    <name>fs.defaultFS</name>
    <value>hdfs://hdp-server-01:9000</value>
  </property>
  <property>
    <name>hadoop.tmp.dir</name>
    <value>/home/yarn/yarn_data/tmp/hadoop-grid</value>
  </property>
</configuration>



<!-- $YARN_HOME/etc/hadoop/hdfs-site.xml -->

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
  <property>
    <name>dfs.replication</name>
    <value>3</value>
  </property>
</configuration>



<!-- $YARN_HOME/etc/hadoop/yarn-site.xml -->

<?xml version="1.0"?>

<configuration>
  <property>
    <name>yarn.nodemanager.aux-services</name>
    <value>mapreduce_shuffle</value>
  </property>
  <property>
    <name>yarn.resourcemanager.address</name>
    <value>hdp-server-01:8032</value>
  </property>
  <property>
      <name>yarn.resourcemanager.resource-tracker.address</name>
      <value>hdp-server-01:8031</value>
  </property>
  <property>
      <name>yarn.resourcemanager.admin.address</name>
      <value>hdp-server-01:8033</value>
  </property>
  <property>
      <name>yarn.resourcemanager.scheduler.address</name>
      <value>hdp-server-01:8030</value>
  </property>
  <property>
      <name>yarn.nodemanager.loacl-dirs</name>
      <value>/home/yarn/yarn_data/mapred/nodemanager</value>
      <final>true</final>
  </property>
  <property>
      <name>yarn.web-proxy.address</name>
      <value>hdp-server-01:8888</value>
  </property>
  <property>
    <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
    <value>org.apache.hadoop.mapred.ShuffleHandler</value>
  </property>
</configuration>





<!-- $YARN_HOME/etc/hadoop/mapred-site.xml -->

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
  <property>
    <name>mapreduce.framework.name</name>
    <value>yarn</value>
  </property>
</configuration>



至此,配置文件修改完毕,修改完后将 $HOME/hadoop-2.2.0 及 $HOME/yarn_data 两个文件分别拷贝至其他机器的同样位置,注意确保文件所有者为yarn。

e. HDFS格式化

$ hdfs namenode -format

f. 启动Hadoop

@hdp-server-01 #在不同vm上启动的服务不同,根据划分的角色

$cd $YARN_HOME
$sbin/hadoop-daemon.sh  --script hdfs start namenode  # 启动namenode
$sbin/hadoop-daemon.sh --script hdfs start datanode  # 启动datanode
$sbin/yarndaemon.shstart nodemanager  #启动nodemanager
$sbin/yarn-daemon.sh  start resourcemanager # 启动resourcemanager
$sbin/yarn-daemon.shstart proxyserver  #启动web App proxy
$sbin/mr-jobhistory-daemon.sh  start historyserver

jps查看
$ jps
8770 ResourceManager
11609 Jps
8644 NodeManager
9071 JobHistoryServer
8479 NameNode
9000 WebAppProxyServer
8552 DataNode

@hdp-server-02
@hdp-server-03

$cd $YARN_HOME
$sbin/yarndaemon.shstart nodemanager  # 启动nodemanager
$sbin/hadoop-daemon.sh  --script hdfs start datanode  # 启动datanode

jps查看
$ jps
6691 NodeManager
9089 Jps
6787 DataNode

至此,集群搭建完毕,跑一个测试用例试试:

cd $YARN_HOME
$ bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar pi 10 1000

这是mongodb蒙特卡洛算法计算圆周率的测试用例,pi后跟的两个数字分别表示使用多少个map以及计算的精度。结果如下:

Number of Maps  = 10
Samples per Map = 1000
Wrote input for Map #0
Wrote input for Map #1
Wrote input for Map #2
Wrote input for Map #3
Wrote input for Map #4
Wrote input for Map #5
Wrote input for Map #6
Wrote input for Map #7
Wrote input for Map #8
Wrote input for Map #9
Starting Job
13/12/22 17:50:42 INFO client.RMProxy: Connecting to ResourceManager at hdp-server-01/10.0.0.225:8032
13/12/22 17:50:43 INFO input.FileInputFormat: Total input paths to process : 10
13/12/22 17:50:43 INFO mapreduce.JobSubmitter: number of splits:10
13/12/22 17:50:43 INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name
13/12/22 17:50:43 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
13/12/22 17:50:43 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative
13/12/22 17:50:43 INFO Configuration.deprecation: mapred.reduce.tasks is deprecated. Instead, use mapreduce.job.reduces
13/12/22 17:50:43 INFO Configuration.deprecation: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
13/12/22 17:50:43 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative
13/12/22 17:50:43 INFO Configuration.deprecation: mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
13/12/22 17:50:43 INFO Configuration.deprecation: mapred.job.name is deprecated. Instead, use mapreduce.job.name
13/12/22 17:50:43 INFO Configuration.deprecation: mapreduce.reduce.class is deprecated. Instead, use mapreduce.job.reduce.class
13/12/22 17:50:43 INFO Configuration.deprecation: mapreduce.inputformat.class is deprecated. Instead, use mapreduce.job.inputformat.class
13/12/22 17:50:43 INFO Configuration.deprecation: mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
13/12/22 17:50:43 INFO Configuration.deprecation: mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
13/12/22 17:50:43 INFO Configuration.deprecation: mapreduce.outputformat.class is deprecated. Instead, use mapreduce.job.outputformat.class
13/12/22 17:50:43 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
13/12/22 17:50:43 INFO Configuration.deprecation: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
13/12/22 17:50:43 INFO Configuration.deprecation: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
13/12/22 17:50:44 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1387700249346_0004
13/12/22 17:50:44 INFO impl.YarnClientImpl: Submitted application application_1387700249346_0004 to ResourceManager at hdp-server-01/10.0.0.225:8032
13/12/22 17:50:44 INFO mapreduce.Job: The url to track the job: http://hdp-server-01:8888/proxy/application_1387700249346_0004/
13/12/22 17:50:44 INFO mapreduce.Job: Running job: job_1387700249346_0004
13/12/22 17:50:53 INFO mapreduce.Job: Job job_1387700249346_0004 running in uber mode : false
13/12/22 17:50:53 INFO mapreduce.Job:  map 0% reduce 0%
13/12/22 17:51:03 INFO mapreduce.Job:  map 40% reduce 0%
13/12/22 17:51:13 INFO mapreduce.Job:  map 90% reduce 0%
13/12/22 17:51:14 INFO mapreduce.Job:  map 100% reduce 0%
13/12/22 17:51:15 INFO mapreduce.Job:  map 100% reduce 100%
13/12/22 17:51:16 INFO mapreduce.Job: Job job_1387700249346_0004 completed successfully
13/12/22 17:51:16 INFO mapreduce.Job: Counters: 43
File System Counters
  FILE: Number of bytes read=226
  FILE: Number of bytes written=878638
  FILE: Number of read operations=0
  FILE: Number of large read operations=0
  FILE: Number of write operations=0
  HDFS: Number of bytes read=2680
  HDFS: Number of bytes written=215
  HDFS: Number of read operations=43
  HDFS: Number of large read operations=0
  HDFS: Number of write operations=3
Job Counters
  Launched map tasks=10
  Launched reduce tasks=1
  Data-local map tasks=10
  Total time spent by all maps in occupied slots (ms)=142127
  Total time spent by all reduces in occupied slots (ms)=8333
Map-Reduce Framework
  Map input records=10
  Map output records=20
  Map output bytes=180
  Map output materialized bytes=280
  Input split bytes=1500
  Combine input records=0
  Combine output records=0
  Reduce input groups=2
  Reduce shuffle bytes=280
  Reduce input records=20
  Reduce output records=0
  Spilled Records=40
  Shuffled Maps =10
  Failed Shuffles=0
  Merged Map outputs=10
  GC time elapsed (ms)=2606
  CPU time spent (ms)=11090
  Physical memory (bytes) snapshot=2605563904
  Virtual memory (bytes) snapshot=11336945664
  Total committed heap usage (bytes)=2184183808
Shuffle Errors
  BAD_ID=0
  CONNECTION=0
  IO_ERROR=0
  WRONG_LENGTH=0
  WRONG_MAP=0
  WRONG_REDUCE=0
File Input Format Counters
  Bytes Read=1180
File Output Format Counters
  Bytes Written=97
Job Finished in 34.098 seconds
Estimated value of Pi is 3.14080000000000000000

总结:

1. 在OpenStack环境启动的虚拟机中搭建Hadoop与物理机搭建并无太大不同,但需要注意虚拟机获取到的IP地址,用openstack分配的浮动ip(Floating ip)往往不能使用。因为浮动ip是由nova-network设置,用于nat转发的,虚拟机自身并不知道这个地址。

2. 集群中使用的虚拟机最好是同样的操作系统,这样可以使用编译好的文件,因为在Hadoop2.2.0框架中 hdfs不存在Master节点,因此每个节点的配置文件都是相同的,故可以先发起一台虚拟机,安装配置完之后将其做成镜像,后续可以起多个节点,区别在于启动的服务不同。

回复

使用道具 举报

null 发表于 2014-3-19 19:18:32
这个是在vm中安装吧?openstack的heat上能直接安装hadoop不?

点评

可以一试  发表于 2014-12-29 01:10
回复

使用道具 举报

pig2 发表于 2014-12-30 01:51:06
null 发表于 2014-3-19 19:18
这个是在vm中安装吧?openstack的heat上能直接安装hadoop不?
可以的,参考这个资源:
openstack与docker集成及heat部署hadoop集群

链接: http://pan.baidu.com/s/1i3h6vhN 密码:qydm

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

推荐上一条 /2 下一条