票房预测:需求与现实
从1896年西洋影戏传入上海徐园,到1905年中国拍摄首部国产电影《定军山》,再到2013年全国电影票房突破200亿 大关,(4)有着百余年历史的中国电影产业,在近几年呈现出飞跃式发展的态势,无论是影片质量、院线建设还是投资规模都有了长足的发展。与此同时,随着 “大数据”时代的到来,电影观影群体、观影偏好与心理、电影信息传播和获取方式也都在发生着深刻的变化。
毋庸置疑,多样化资本的加入是中国电影不可或缺的发展引擎,然而,电影行业以投资回报率难以预测著称,大投入未必有大产出,票房预测工具的缺失使得投资者无法有效对冲投资风险,华人著名导演吴宇森的《风语者》就拖累了米高梅公司最终走向破产。因此制作与发行公司不得不考虑所有对票房有影响的因素:辣妈李小璐对《私人订制》票房贡献几何;《风暴》票房为何远低于其金牌制片人江志强预期;被吐槽“烂片”的《富山春居图》和《小时代》缘何票房却一路走红;成龙大叔的《警察故事2013》有无必要拍成3D;《泰囧》的“报复性”观影效应能否复现……这一切的一切其实都可以从“大数据”中找到答案。因为网络上的每一次浏览、查询乃至点击所汇聚成的群体智慧都“蝴蝶效应”般地影响着电影的最终票房。
2013年Google在一份名为《Quantifying Movie Magic with Google Search》(5) 的白皮书中公布了其电影票房预测模型,该模型主要利用搜索、广告点击数据以及院线排片来预测票房,Google宣布其模型预测票房与真实票房的吻合程度达到了94%,但并未见其公开对未上映电影的预测结果。
搜狗公司借助“深思”系统,建立了更为复杂的模型,用于预测国内电影票房,并在新浪微博上提前发布了2013年12月国内上映电影的首周票房预测结果。很高兴到目前为止预测结果与真实数据非常接近,同时,我们的模型还可以用于对影响票房的因素进行定量分析。