问题导读:
1.将日志导入hive中日志表中你认为有几种方法?
2.如何在hive中创建hbase表,达到数据共享?
3.如何使用filter获取指定数据?
一、Nginx的相关配置,以及测试数据
#Nginx的Conf中log格式化部分的内容
log_format main '$remote_addr - $remote_user [$time_local] "$request" '
'$status $body_bytes_sent "$http_referer" '
'"$http_user_agent" "$http_x_forwarded_for" '
'"$gzip_ratio" $request_time $bytes_sent $request_length '
'"$upstream_addr" $upstream_status $upstream_response_time'; 复制代码
#Nginx生成后部分格式如下(测试数据)
8.8.8.8 - - [22/Aug/2014:20:23:45 +0800] "GET / HTTP/1.1" 200 2373 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36" "-" "2.78" 0.004 2683 369 "unix:/var/run/php5-fpm.sock" 200 0.004
8.8.8.8 - - [22/Aug/2014:20:23:45 +0800] "GET 8.8.8.8/b519d8ca/css/base.css HTTP/1.1" 200 940 "http://xxx.com/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36" "-" "-" 0.000 1247 373 "-" - -
8.8.8.8 - - [22/Aug/2014:20:23:45 +0800] "GET 8.8.8.8/a3e2e507/jquery.min.js HTTP/1.1" 200 93636 "http://xxx.com/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36" "-" "-" 0.152 93976 359 "-" - -
8.8.8.8 - - [22/Aug/2014:20:23:45 +0800] "GET 8.8.8.8/b519d8ca/image/logo.png HTTP/1.1" 200 6059 "http://xxx.com/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36" "-" "-" 0.000 6369 377 "-" - -
8.8.8.8 - - [22/Aug/2014:20:23:45 +0800] "GET 8.8.8.8/b519d8ca/image/p02.jpg HTTP/1.1" 200 22177 "http://xxx.com/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36" "-" "-" 0.000 22489 376 "-" - -
8.8.8.8 - - [22/Aug/2014:20:23:45 +0800] "GET 8.8.8.8/b519d8ca/image/p03.png HTTP/1.1" 200 3012 "http://xxx.com/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36" "-" "-" 0.000 3321 376 "-" - -
8.8.8.8 - - [22/Aug/2014:20:23:45 +0800] "GET 8.8.8.8/b519d8ca/image/two-dimension-code1.png HTTP/1.1" 200 761 "http://xxx.com/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36" "-" "-" 0.000 1069 392 "-" - -
8.8.8.8 - - [22/Aug/2014:20:23:45 +0800] "GET 8.8.8.8/b519d8ca/image/bg.png HTTP/1.1" 200 11474 "http://xxx.com/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36" "-" "-" 0.000 11785 375 "-" - -
8.8.8.8 - - [22/Aug/2014:20:23:45 +0800] "GET 8.8.8.8/b519d8ca/image/p04.png HTTP/1.1" 200 2860 "http://xxx.com/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36" "-" "-" 0.000 3169 376 "-" - -
8.8.8.8 - - [22/Aug/2014:20:23:45 +0800] "GET 8.8.8.8/b519d8ca/image/p06.png HTTP/1.1" 200 74097 "http://xxx.com/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36" "-" "-" 0.062 74409 376 "-" - -
8.8.8.8 - - [22/Aug/2014:20:23:45 +0800] "GET 8.8.8.8/b519d8ca/image/p05.png HTTP/1.1" 200 132072 "http://xxx.com/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36" "-" "-" 0.256 132385 376 "-" - -
8.8.8.8 - - [22/Aug/2014:20:23:46 +0800] "GET 8.8.8.8/b519d8ca/image/p07.png HTTP/1.1" 200 207987 "http://xxx.com/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36" "-" "-" 0.592 208300 376 "-" - -
8.8.8.8 - - [22/Aug/2014:20:23:46 +0800] "GET 8.8.8.8/b519d8ca/image/p01.png HTTP/1.1" 200 310418 "http://xxx.com/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36" "-" "-" 0.918 310731 376 "-" - -
复制代码
二、Hadoop中创建使用目录
#在Hadoop2.2.0中创建Hive外部表中要用到的目录
root@m1:/home/hadoop# /home/hadoop/hadoop-2.2.0/bin/hadoop fs -mkdir /user/hive/warehouse/nginxlog
root@m1:/home/hadoop# /home/hadoop/hadoop-2.2.0/bin/hadoop fs -ls /user/hive/warehouse
Found 1 items
drwxr-xr-x - root supergroup 0 2014-01-22 23:13 /user/hive/warehouse/nginxlog
root@m1:/home/hadoop# 复制代码
三、Hive的日志表创建,并同步到Hbase中
1)创建自增长ID的java类UDFRowSequence.java,并添加到Hive环境中
#在Eclipse中创建Maven项目,然后使用Maven将项目打包成Jar文件,过程中需要引入hadoop-common-2.2.0.jar、hive-exec-0.13.1.jar这两个文件,可以在Hadoop2.2.0目录以及Hive0.13.1目录中找到。如果不会使用Maven将项目打包,可以参考这篇文章《Golang、Php、Python、Java基于Thrift0.9.1实现跨语言调用 》中实现Java客户端部分,有如何打包的方法。
UDFRowSequence.java代码如下,使用Maven会打包成一个idoall.org-0.0.1-SNAPSHOT-jar-with-dependencies.jar文件,上传到Hive的lib目录下。本文后面会提供代码下载:
package idoall.org.hive;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.hive.ql.udf.UDFType;
import org.apache.hadoop.io.LongWritable;
/**
* UDFRowSequence.
*/
@Description(name = "row_sequence",
value = "_FUNC_() - Returns a generated row sequence number starting from 1")
@UDFType(deterministic = false, stateful = true)
public class UDFRowSequence extends UDF
{
private LongWritable result = new LongWritable();
public UDFRowSequence() {
result.set(0);
}
public LongWritable evaluate() {
result.set(result.get() + 1);
return result;
}
} 复制代码
2)在Hive中创建日志表
#然后将我们自定义的idoall.org-0.0.1-SNAPSHOT-jar-with-dependencies.jar,添加到Hive运行环境中
hive> ADD JAR /home/hadoop/hive-0.13.1/lib/idoall.org-0.0.1-SNAPSHOT-jar-with-dependencies.jar;
Added /home/hadoop/hive-0.13.1/lib/idoall.org-0.0.1-SNAPSHOT-jar-with-dependencies.jar to class path
Added resource: /home/hadoop/hive-0.13.1/lib/idoall.org-0.0.1-SNAPSHOT-jar-with-dependencies.jar
hive> 复制代码
#在Hive中创建自定义函数对数据进行处理,如果不想每次都执行这个命令,可以在hive-site.xml里面的<name>hive.aux.jars.path</name> 节点下面,把jar文件加到<value>节点中。
hive> CREATE TEMPORARY FUNCTION rowSequence AS 'idoall.org.hive.UDFRowSequence';
OK
Time taken: 0.048 seconds 复制代码
#在Hive中创建收集Nginx的日志表(nginx_accesslog)
create external table nginx_accesslog(
host string,
hostuser string,
times string,
requestmethond string,
requesturl string,
requesthttp string,
status string,
body_bytes_sent string,
referer string,
useragent string,
http_x_forwarded_for string,
gzip_ratio string,
request_time string,
bytes_sent string,
request_length string,
upstream_addr string,
upstream_status string,
upstream_response_time string)
PARTITIONED BY(YEAR STRING, MONTH STRING, DAY STRING)
row format SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
WITH SERDEPROPERTIES ("input.regex" = "([^ ]*)\\s+-\\s+(.+?|-)\\s+\\[(.*)\\]\\s+"([^ ]*)\\s+([^ ]*)\\s+([^ |"]*)"\\s+(-|[0-9]*)\\s+(-|[0-9]*)\\s+"(.+?|-)"\\s+"(.+?|-)"\\s+"(.+?|-)"\\s+"(.+?|-)"\\s+(.+?|-)\\s+(.+?|-)\\s+(.+?|-)\\s+"(.+?|-)"\\s+(.+?|-)\\s+(.*)","output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s %7$s %8$s %9$s %10$s %11$s %12$s %13$s %14$s %15$s %16$s %17$s %18$s")
STORED AS TEXTFILE
location '/user/hive/warehouse/nginxlog'; 复制代码
3)将Nginx的日志数据导入到Hive日志表中
关于导入数据过程中overwrite的特性:
•目标表(或者分区)中的内容(如果有)会被删除,然后再将 filepath 指向的文件/目录中的内容添加到表/分区中。
•如果目标表(分区)已经有一个文件,并且文件名和 filepath 中的文件名冲突,那么现有的文件会被新文件所替代
如果不使用overwrite,改用into,只会增加记录。
方法一:将本地目录中的文件导入到Hive中
hive> LOAD DATA LOCAL INPATH '/home/hadoop/hive-0.13.1/a.com.access.20140821.log' OVERWRITE INTO TABLE nginx_accesslog partition (YEAR='2014', MONTH='08',DAY='21');
Copying data from file:/home/hadoop/hive-0.13.1/a.com.access.20140821.log
Copying file: file:/home/hadoop/hive-0.13.1/a.com.access.20140821.log
Loading data to table default.nginx_accesslog partition (year=2014, month=08, day=21)
Partition default.nginx_accesslog{year=2014, month=08, day=21} stats: [numFiles=1, numRows=0, totalSize=3483, rawDataSize=0]
OK
Time taken: 1.046 seconds
hive> select count(0) from nginx_accesslog;
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1408550631561_0005, Tracking URL = http://m1:8088/proxy/application_1408550631561_0005/
Kill Command = /home/hadoop/hadoop-2.2.0/bin/hadoop job -kill job_1408550631561_0005
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2014-08-22 23:19:55,322 Stage-1 map = 0%, reduce = 0%
2014-08-22 23:20:01,669 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.74 sec
2014-08-22 23:20:08,926 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 1.59 sec
MapReduce Total cumulative CPU time: 1 seconds 590 msec
Ended Job = job_1408550631561_0005
MapReduce Jobs Launched:
Job 0: Map: 1 Reduce: 1 Cumulative CPU: 1.59 sec HDFS Read: 3734 HDFS Write: 3 SUCCESS
Total MapReduce CPU Time Spent: 1 seconds 590 msec
OK
13
Time taken: 24.762 seconds, Fetched: 1 row(s)
hive> 复制代码
方法二:从HDFS导入数据,我们先将表删除,重新创建一次,然后尝试从HDFS导入数据
#先用Hadoop命令,将文件上传到HDFS中
root@m1:/home/hadoop# /home/hadoop/hadoop-2.2.0/bin/hadoop fs -copyFromLocal /home/hadoop/hive-0.13.1/a.com.access.20140821.log /user/hive/warehouse/nginxlog/
root@m1:/home/hadoop# /home/hadoop/hadoop-2.2.0/bin/hadoop fs -ls /user/hive/warehouse/nginxlog
Found 1 items
-rw-r--r-- 3 root supergroup 3483 2014-08-22 23:18 /user/hive/warehouse/nginxlog/a.com.access.20140821.log
root@m1:/home/hadoop# 复制代码
#执行Hive命令,从HDFS导入数据,然后使用SELECT语句,可以看到Nginx的日志数据已经成功导入到Hive表中
#先删除表
hive> drop table nginx_accesslog;
OK
Time taken: 0.363 seconds
hive>
#再创建表
....此处省略,参考上文命令重新创建一次
#从HDFS导入数据(如果文件存在,要先删除),从下图可以看到,数据导入成功
hive> LOAD DATA inpath '/user/hive/warehouse/nginxlog/a.com.access.20140821.log' overwrite INTO TABLE nginx_accesslog partition (YEAR='2014', MONTH='08',DAY='21');
Loading data to table default.nginx_accesslog partition (year=2014, month=08, day=21)
Partition default.nginx_accesslog{year=2014, month=08, day=21} stats: [numFiles=1, numRows=0, totalSize=3483, rawDataSize=0]
OK
Time taken: 0.373 seconds
hive> select * from nginx_accesslog limit 100;
OK
8.8.8.8 - 22/Aug/2014:20:23:45 +0800 GET / HTTP/1.1 200 2373 - Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36 - 2.78 0.004 2683 369 unix:/var/run/php5-fpm.sock 200 0.004 2014 08 21
8.8.8.8 - 22/Aug/2014:20:23:45 +0800 GET 8.8.8.8/b519d8ca/css/base.css HTTP/1.1 200 940 http://xxx.com/ Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36 - - 0.000 1247 373 - - - 2014 08 21
8.8.8.8 - 22/Aug/2014:20:23:45 +0800 GET 8.8.8.8/a3e2e507/jquery.min.js HTTP/1.1 200 93636 http://xxx.com/ Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36 - - 0.152 93976 359 - - - 2014 08 21
8.8.8.8 - 22/Aug/2014:20:23:45 +0800 GET 8.8.8.8/b519d8ca/image/logo.png HTTP/1.1 200 6059 http://xxx.com/ Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36 - - 0.000 6369 377 - - - 2014 08 21
8.8.8.8 - 22/Aug/2014:20:23:45 +0800 GET 8.8.8.8/b519d8ca/image/p02.jpg HTTP/1.1 200 22177 http://xxx.com/ Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36 - - 0.000 22489 376 - - - 2014 08 21
8.8.8.8 - 22/Aug/2014:20:23:45 +0800 GET 8.8.8.8/b519d8ca/image/p03.png HTTP/1.1 200 3012 http://xxx.com/ Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36 - - 0.000 3321 376 - - - 2014 08 21
8.8.8.8 - 22/Aug/2014:20:23:45 +0800 GET 8.8.8.8/b519d8ca/image/two-dimension-code1.png HTTP/1.1 200 761 http://xxx.com/ Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36 - - 0.000 1069 392 - - - 2014 08 21
8.8.8.8 - 22/Aug/2014:20:23:45 +0800 GET 8.8.8.8/b519d8ca/image/bg.png HTTP/1.1 200 11474 http://xxx.com/ Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36 - - 0.000 11785 375 - - - 2014 08 21
8.8.8.8 - 22/Aug/2014:20:23:45 +0800 GET 8.8.8.8/b519d8ca/image/p04.png HTTP/1.1 200 2860 http://xxx.com/ Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36 - - 0.000 3169 376 - - - 2014 08 21
8.8.8.8 - 22/Aug/2014:20:23:45 +0800 GET 8.8.8.8/b519d8ca/image/p06.png HTTP/1.1 200 74097 http://xxx.com/ Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36 - - 0.062 74409 376 - - - 2014 08 21
8.8.8.8 - 22/Aug/2014:20:23:45 +0800 GET 8.8.8.8/b519d8ca/image/p05.png HTTP/1.1 200 132072 http://xxx.com/ Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36 - - 0.256 132385 376 - - - 2014 08 21
8.8.8.8 - 22/Aug/2014:20:23:46 +0800 GET 8.8.8.8/b519d8ca/image/p07.png HTTP/1.1 200 207987 http://xxx.com/ Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36 - - 0.592 208300 376 - - - 2014 08 21
8.8.8.8 - 22/Aug/2014:20:23:46 +0800 GET 8.8.8.8/b519d8ca/image/p01.png HTTP/1.1 200 310418 http://xxx.com/ Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36 - - 0.918 310731 376 - - - 2014 08 21
Time taken: 0.056 seconds, Fetched: 13 row(s)
hive> 复制代码
方法三:通过如Flume、Kafka一类的工具监控日志数据,自动导入
就不在这里细说,可以参考这两篇文章里面的实例,根据自己的业务需求修改代码:《Flume1.5.0的安装、部署、简单应用(含分布式、与hadoop2.2.0、hbase0.96的案例) 》、《Flume+Kafka+Strom基于分布式环境的结合使用 》
4)在Hive中创建Hbase可以识别的表
#在Hive中创建Hbase可以识别的表,相当于一张中间表了。同时将之前的测试数据导入到这张中间表,会自动同步到Hbase。
CREATE TABLE h2b_nginx_accesslog(
key int,
host string,
hostuser string,
times string,
requestmethond string,
requesturl string,
requesthttp string,
status string,
body_bytes_sent string,
referer string,
useragent string,
http_x_forwarded_for string,
gzip_ratio string,
request_time string,
bytes_sent string,
request_length string,
upstream_addr string,
upstream_status string,
upstream_response_time string)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,log:host,log:hostuser,log:times,log:requestmethond,log:requesturl,log:requesthttp,log:status,log:body_bytes_sent,log:referer,log:useragent,log:http_x_forwarded_for,log:gzip_ratio,log:request_time,log:bytes_sent,log:request_length,log:upstream_addr,log:upstream_status,log:upstream_response_time") TBLPROPERTIES ("hbase.table.name" = "h2b_nginx_accesslog"); 复制代码
#这时在Hbase中,可以看到h2b_nginx_accesslog表自动创建了;
hbase(main):002:0> list
TABLE
h2b_nginx_accesslog
1 row(s) in 0.1220 seconds
=> ["h2b_nginx_accesslog"]
/* 查看表结构时,只会显示列族,而不会显示列。Hbase表中的每个列,都归属与某个列族。列族是表的chema的一部分(而列不是)。*/
hbase(main):003:0> describe "h2b_nginx_accesslog"
DESCRIPTION ENABLED
'h2b_nginx_accesslog', {NAME => 'log', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'ROW', REPLICATION_SCOPE => '0', VERSIONS => '1', CO true
MPRESSION => 'NONE', MIN_VERSIONS => '0', TTL => '2147483647', KEEP_DELETED_CELLS => 'false', BLOCKSIZE => '65536', IN_MEMORY => 'false',
BLOCKCACHE => 'true'}
1 row(s) in 0.5890 seconds
hbase(main):004:0> 复制代码
5)将Hive的日志表,使用自增长Id做为rowkey导入到Hbase可识别的表中
#将Hive的日志表(nginx_accesslog)导入到表(h2b_nginx_accesslog)中,会自动同步到hbase。
insert overwrite table h2b_nginx_accesslog
select a.*
from (select
rowSequence(),
host,
hostuser,
times,
requestmethond,
requesturl,
requesthttp,
status,
body_bytes_sent,
referer,
useragent,
http_x_forwarded_for,
gzip_ratio,
request_time,
bytes_sent,
request_length,
upstream_addr,
upstream_status,
upstream_response_time
from nginx_accesslog) a; 复制代码
#导入到中间表时运行的结果,如果你也能够看到和下面类似的日志,恭喜你成功了。
hive> insert overwrite table h2b_nginx_accesslog
> select a.*
> from (select
> rowSequence(),
> host,
> hostuser,
> times,
> requestmethond,
> requesturl,
> requesthttp,
> status,
> body_bytes_sent,
> referer,
> useragent,
> http_x_forwarded_for,
> gzip_ratio,
> request_time,
> bytes_sent,
> request_length,
> upstream_addr,
> upstream_status,
> upstream_response_time
> from nginx_accesslog) a;
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1408550631561_0017, Tracking URL = http://m1:8088/proxy/application_1408550631561_0017/
Kill Command = /home/hadoop/hadoop-2.2.0/bin/hadoop job -kill job_1408550631561_0017
Hadoop job information for Stage-0: number of mappers: 1; number of reducers: 0
2014-08-24 11:57:24,051 Stage-0 map = 0%, reduce = 0%
2014-08-24 11:57:32,403 Stage-0 map = 100%, reduce = 0%, Cumulative CPU 1.96 sec
MapReduce Total cumulative CPU time: 1 seconds 960 msec
Ended Job = job_1408550631561_0017
MapReduce Jobs Launched:
Job 0: Map: 1 Cumulative CPU: 1.96 sec HDFS Read: 3734 HDFS Write: 0 SUCCESS
Total MapReduce CPU Time Spent: 1 seconds 960 msec
OK
Time taken: 20.378 seconds
hive> 复制代码
6)到Hbase中验证效果使用get、scan、filter获取指定数据
#我们再登录到Hbase中看数据是否已经导入
hbase(main):013:0> get "h2b_nginx_accesslog",1
COLUMN CELL
log:body_bytes_sent timestamp=1408852652522, value=2373
log:bytes_sent timestamp=1408852652522, value=2683
log:gzip_ratio timestamp=1408852652522, value=2.78
log:host timestamp=1408852652522, value=8.8.8.8
log:hostuser timestamp=1408852652522, value=-
log:http_x_forwarded_for timestamp=1408852652522, value=-
log:referer timestamp=1408852652522, value=-
log:request_length timestamp=1408852652522, value=369
log:request_time timestamp=1408852652522, value=0.004
log:requesthttp timestamp=1408852652522, value=HTTP/1.1
log:requestmethond timestamp=1408852652522, value=GET
log:requesturl timestamp=1408852652522, value=/
log:status timestamp=1408852652522, value=200
log:times timestamp=1408852652522, value=22/Aug/2014:20:23:45 +0800
log:upstream_addr timestamp=1408852652522, value=unix:/var/run/php5-fpm.sock
log:upstream_response_time timestamp=1408852652522, value=0.004
log:upstream_status timestamp=1408852652522, value=200
log:useragent timestamp=1408852652522, value=Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36
18 row(s) in 0.0440 seconds
hbase(main):015:0> get "h2b_nginx_accesslog",1,{COLUMN => 'log:useragent'}
COLUMN CELL
log:useragent timestamp=1408852652522, value=Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Safari/537.36
1 row(s) in 0.0080 seconds 复制代码
#使用Filter过滤requesturl列中包含p04.png的记录,使用之前要先导入子串
hbase(main):031:0> import org.apache.hadoop.hbase.filter.CompareFilter
hbase(main):032:0> import org.apache.hadoop.hbase.filter.SingleColumnValueFilter
hbase(main):033:0> import org.apache.hadoop.hbase.filter.SubstringComparator
hbase(main):034:0> import org.apache.hadoop.hbase.util.Bytes
hbase(main):035:0> scan "h2b_nginx_accesslog",{FILTER => SingleColumnValueFilter.new(Bytes.toBytes('log'),Bytes.toBytes('requesturl'),CompareFilter::CompareOp.valueOf('EQUAL'),SubstringComparator.new('p04.png'))}
ROW COLUMN+CELL
9 column=log:body_bytes_sent, timestamp=1408852652522, value=2860
9 column=log:bytes_sent, timestamp=1408852652522, value=3169
9 column=log:gzip_ratio, timestamp=1408852652522, value=-
9 column=log:host, timestamp=1408852652522, value=8.8.8.8
9 column=log:hostuser, timestamp=1408852652522, value=-
9 column=log:http_x_forwarded_for, timestamp=1408852652522, value=-
9 column=log:referer, timestamp=1408852652522, value=http://xxx.com/
9 column=log:request_length, timestamp=1408852652522, value=376
9 column=log:request_time, timestamp=1408852652522, value=0.000
9 column=log:requesthttp, timestamp=1408852652522, value=HTTP/1.1
9 column=log:requestmethond, timestamp=1408852652522, value=GET
9 column=log:requesturl, timestamp=1408852652522, value=8.8.8.8/b519d8ca/image/p04.png
9 column=log:status, timestamp=1408852652522, value=200
9 column=log:times, timestamp=1408852652522, value=22/Aug/2014:20:23:45 +0800
9 column=log:upstream_addr, timestamp=1408852652522, value=-
9 column=log:upstream_response_time, timestamp=1408852652522, value=-
9 column=log:upstream_status, timestamp=1408852652522, value=-
9 column=log:useragent, timestamp=1408852652522, value=Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.0 Sa
fari/537.36
1 row(s) in 0.0320 seconds
hbase(main):036:0> 复制代码
四、FAQ
1)如果导入的内容使用select查看时,发现是null,那可能是你的正则写的有问题,可以使用下面这个工具验证你的正则是否有问题。
#http://regex101.com ,一个在线的正则表达式工具,很好用,如下图。
#在线测试通过后,将正则表达式,复制到一个文本文件中,进行两次转义字符的替换就可以使用了,第1次,将一个右斜杠去你的成两个右斜杠:'\'替换成'\\';第二次将双引号替换成斜框双引号'"'替换成'\"'
2)如果提示“org.apache.hadoop.hive.contrib.serde2.RegexSerDe”相关的错误,请在hive中执行以下命令:
hive> add jar /home/hjl/hive/lib/hive_contrib.jar; 复制代码