本帖最后由 52Pig 于 2014-10-30 23:17 编辑
阅读导读:
1.如何搭建RHadoop开发环境?
2.搭建RHadoop和Hadoop环境搭建的区别?
3.如何执行rmr2任务?
4.hadoop命令与RHadoop命令有哪些区别?
环境准备
首先环境准备,这里我选择了Linux Ubuntu操作系统12.04的64位版本,大家可以根据自己的使用习惯选择顺手的Linux。
但JDK一定要用Oracle SUN官方的版本,请从官网下载,操作系统的自带的OpenJDK会有各种不兼容。JDK请选择1.6.x的版本,JDK1.7版本也会有各种的不兼容情况。
http://www.oracle.com/technetwork/java/javase/downloads/index.html
Hadoop的环境安装,相信大家都已经学会了。R语言请安装2.15以后的版本,2.14是不能够支持RHadoop的。
如果你也使用Linux Ubuntu操作系统12.04,请先更新软件包源,否则只能下载到2.14版本的R。
1. 操作系统Ubuntu 12.04 x64
- ~ uname -a
- Linux domU-00-16-3e-00-00-85 3.2.0-23-generic #36-Ubuntu SMP Tue Apr 10 20:39:51 UTC 2012 x86_64 x86_64 x86_64 GNU/Linux
复制代码
2 JAVA环境
- ~ java -version
-
- java version "1.6.0_29"
- Java(TM) SE Runtime Environment (build 1.6.0_29-b11)
- Java HotSpot(TM) 64-Bit Server VM (build 20.4-b02, mixed mode)
复制代码
3 HADOOP环境(这里只需要hadoop)
- hadoop-1.0.3 hbase-0.94.2 hive-0.9.0 pig-0.10.0 sqoop-1.4.2 thrift-0.8.0 zookeeper-3.4.4
复制代码
4 R的环境
- R version 2.15.3 (2013-03-01) -- "Security Blanket"
- Copyright (C) 2013 The R Foundation for Statistical Computing
- ISBN 3-900051-07-0
- Platform: x86_64-pc-linux-gnu (64-bit)
复制代码
4.1 如果是Ubuntu 12.04,请更新源再下载R2.15.3版本
- sh -c "echo deb http://mirror.bjtu.edu.cn/cran/bin/linux/ubuntu precise/ >>/etc/apt/sources.list"
- apt-get update
- apt-get install r-base
复制代码
RHadoop安装
RHadoop是RevolutionAnalytics的工程的项目,开源实现代码在GitHub社区可以找到。RHadoop包含三个R包 (rmr,rhdfs,rhbase),分别是对应Hadoop系统架构中的,MapReduce, HDFS, HBase 三个部分。由于这三个库不能在CRAN中找到,所以需要自己下载。
https://github.com/RevolutionAnalytics/RHadoop/wiki
接下我们需要先安装这三个库的依赖库。
首先是rJava,配置好JDK1.6的环境,运行R CMD javareconf命令,R的程序从系统变量中会读取Java配置。然后打开R程序,通过install.packages的方式,安装rJava。
然后,我还要安装其他的几个依赖库,reshape2,Rcpp,iterators,itertools,digest,RJSONIO,functional,通过install.packages都可以直接安装。
接下安装rhdfs库,在环境变量中增加 HADOOP_CMD 和 HADOOP_STREAMING 两个变量,可以用export在当前命令窗口中增加。但为下次方便使用,最好把变量增加到系统环境变更/etc/environment文件中。再用 R CMD INSTALL安装rhdfs包,就可以顺利完成了。
安装rmr库,使用R CMD INSTALL也可以顺利完成了。
最后,我们可以查看一下,RHADOOP都安装了哪些库。
由于我的硬盘是外接的,使用mount和软连接(ln -s)挂载了R类库的目录,所以是R的类库在/disk1/system下面
/disk1/system/usr/local/lib/R/site-library/
一般R的类库目录是/usr/lib/R/site-library或者/usr/local/lib/R/site-library,用户也可以使用whereis R的命令查询,自己电脑上R类库的安装位置
1. 下载RHadoop相关的3个程序包
https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads
- rmr-2.1.0
- rhdfs-1.0.5
- rhbase-1.1
复制代码
2. 复制到/root/R目录
- ~/R# pwd
- /root/R
-
- ~/R# ls
- rhbase_1.1.tar.gz rhdfs_1.0.5.tar.gz rmr2_2.1.0.tar.gz
复制代码
3. 安装依赖库
命令行执行
复制代码
启动R程序
- install.packages("rJava")
- install.packages("reshape2")
- install.packages("Rcpp")
- install.packages("iterators")
- install.packages("itertools")
- install.packages("digest")
- install.packages("RJSONIO")
- install.packages("functional")
复制代码
4. 安装rhdfs库
- ~ export HADOOP_CMD=/root/hadoop/hadoop-1.0.3/bin/hadoop
- ~ export HADOOP_STREAMING=/root/hadoop/hadoop-1.0.3/contrib/streaming/hadoop-streaming-1.0.3.jar (rmr2会用到)
- ~ R CMD INSTALL /root/R/rhdfs_1.0.5.tar.gz
复制代码
4.1 最好把HADOOP_CMD设置到环境变量
- ~ vi /etc/environment
-
- HADOOP_CMD=/root/hadoop/hadoop-1.0.3/bin/hadoop
- HADOOP_STREAMING=/root/hadoop/hadoop-1.0.3/contrib/streaming/hadoop-streaming-1.0.3.jar
-
- . /etc/environment
复制代码
5. 安装rmr库
- ~ R CMD INSTALL rmr2_2.1.0.tar.gz
复制代码
6. 所有的安装包
- ~ ls /disk1/system/usr/local/lib/R/site-library/
- digest functional iterators itertools plyr Rcpp reshape2 rhdfs rJava RJSONIO rmr2 stringr
复制代码
RHadoop程序用例
文字说明部分:
安装好rhdfs和rmr两个包后,我们就可以使用R尝试一些hadoop的操作了。
首先,是基本的hdfs的文件操作。
查看hdfs文件目录
hadoop的命令:hadoop fs -ls /user
R语言函数:hdfs.ls(”/user/“)
查看hadoop数据文件
hadoop的命令:hadoop fs -cat /user/hdfs/o_same_school/part-m-00000
R语言函数:hdfs.cat(”/user/hdfs/o_same_school/part-m-00000″)
接下来,我们执行一个rmr算法的任务
普通的R语言程序:
- > small.ints = 1:10
- > sapply(small.ints, function(x) x^2)
复制代码
MapReduce的R语言程序:
- > small.ints = to.dfs(1:10)
- > mapreduce(input = small.ints, map = function(k, v) cbind(v, v^2))
- > from.dfs("/tmp/RtmpWnzxl4/file5deb791fcbd5")
复制代码
因为MapReduce只能访问HDFS文件系统,先要用to.dfs把数据存储到HDFS文件系统里。MapReduce的运算结果再用from.dfs函数从HDFS文件系统中取出。
第二个,rmr的例子是wordcount,对文件中的单词计数
- > input<- '/user/hdfs/o_same_school/part-m-00000'
- > wordcount = function(input, output = NULL, pattern = " "){
-
- wc.map = function(., lines) {
- keyval(unlist( strsplit( x = lines,split = pattern)),1)
- }
-
- wc.reduce =function(word, counts ) {
- keyval(word, sum(counts))
- }
-
- mapreduce(input = input ,output = output, input.format = "text",
- map = wc.map, reduce = wc.reduce,combine = T)
- }
-
- > wordcount(input)
- > from.dfs("/tmp/RtmpfZUFEa/file6cac626aa4a7")
复制代码
我在HDFS上提前放置了数据文件/user/hdfs/o_same_school/part-m-00000。写wordcount的MapReduce函数,执行wordcount函数,最后用from.dfs从HDFS中取得结果。
代码部分:
1. rhdfs包的使用
启动R程序
- > library(rhdfs)
-
- Loading required package: rJava
- HADOOP_CMD=/root/hadoop/hadoop-1.0.3/bin/hadoop
- Be sure to run hdfs.init()
-
- > hdfs.init()
复制代码
1.1 命令查看hadoop目录
- ~ hadoop fs -ls /user
-
- Found 4 items
- drwxr-xr-x - root supergroup 0 2013-02-01 12:15 /user/conan
- drwxr-xr-x - root supergroup 0 2013-03-06 17:24 /user/hdfs
- drwxr-xr-x - root supergroup 0 2013-02-26 16:51 /user/hive
- drwxr-xr-x - root supergroup 0 2013-03-06 17:21 /user/root
复制代码
1.2 rhdfs查看hadoop目录
- > hdfs.ls("/user/")
-
- permission owner group size modtime file
- 1 drwxr-xr-x root supergroup 0 2013-02-01 12:15 /user/conan
- 2 drwxr-xr-x root supergroup 0 2013-03-06 17:24 /user/hdfs
- 3 drwxr-xr-x root supergroup 0 2013-02-26 16:51 /user/hive
- 4 drwxr-xr-x root supergroup 0 2013-03-06 17:21 /user/root
复制代码
1.3 命令查看hadoop数据文件
- ~ hadoop fs -cat /user/hdfs/o_same_school/part-m-00000
-
- 10,3,tsinghua university,2004-05-26 15:21:00.0
- 23,4007,北京第一七一中学,2004-05-31 06:51:53.0
- 51,4016,大连理工大学,2004-05-27 09:38:31.0
- 89,4017,Amherst College,2004-06-01 16:18:56.0
- 92,4017,斯坦福大学,2012-11-28 10:33:25.0
- 99,4017,Stanford University Graduate School of Business,2013-02-19 12:17:15.0
- 113,4017,Stanford University,2013-02-19 12:17:15.0
- 123,4019,St Paul's Co-educational College - Hong Kong,2004-05-27 18:04:17.0
- 138,4019,香港苏浙小学,2004-05-27 18:59:58.0
- 172,4020,University,2004-05-27 19:14:34.0
- 182,4026,ff,2004-05-28 04:42:37.0
- 183,4026,ff,2004-05-28 04:42:37.0
- 189,4033,tsinghua,2011-09-14 12:00:38.0
- 195,4035,ba,2004-05-31 07:10:24.0
- 196,4035,ma,2004-05-31 07:10:24.0
- 197,4035,southampton university,2013-01-07 15:35:18.0
- 246,4067,美国史丹佛大学,2004-06-12 10:42:10.0
- 254,4067,美国史丹佛大学,2004-06-12 10:42:10.0
- 255,4067,美国休士顿大学,2004-06-12 10:42:10.0
- 257,4068,清华大学,2004-06-12 10:42:10.0
- 258,4068,北京八中,2004-06-12 17:34:02.0
- 262,4068,香港中文大学,2004-06-12 17:34:02.0
- 310,4070,首都师范大学初等教育学院,2004-06-14 15:35:52.0
- 312,4070,北京师范大学经济学院,2004-06-14 15:35:52.0
- 1.4 rhdfs查看hadoop数据文件
复制代码
- > hdfs.cat("/user/hdfs/o_same_school/part-m-00000")
-
- [1] "10,3,tsinghua university,2004-05-26 15:21:00.0"
- [2] "23,4007,北京第一七一中学,2004-05-31 06:51:53.0"
- [3] "51,4016,大连理工大学,2004-05-27 09:38:31.0"
- [4] "89,4017,Amherst College,2004-06-01 16:18:56.0"
- [5] "92,4017,斯坦福大学,2012-11-28 10:33:25.0"
- [6] "99,4017,Stanford University Graduate School of Business,2013-02-19 12:17:15.0"
- [7] "113,4017,Stanford University,2013-02-19 12:17:15.0"
- [8] "123,4019,St Paul's Co-educational College - Hong Kong,2004-05-27 18:04:17.0"
- [9] "138,4019,香港苏浙小学,2004-05-27 18:59:58.0"
- [10] "172,4020,University,2004-05-27 19:14:34.0"
- [11] "182,4026,ff,2004-05-28 04:42:37.0"
- [12] "183,4026,ff,2004-05-28 04:42:37.0"
- [13] "189,4033,tsinghua,2011-09-14 12:00:38.0"
- [14] "195,4035,ba,2004-05-31 07:10:24.0"
- [15] "196,4035,ma,2004-05-31 07:10:24.0"
- [16] "197,4035,southampton university,2013-01-07 15:35:18.0"
- [17] "246,4067,美国史丹佛大学,2004-06-12 10:42:10.0"
- [18] "254,4067,美国史丹佛大学,2004-06-12 10:42:10.0"
- [19] "255,4067,美国休士顿大学,2004-06-12 10:42:10.0"
- [20] "257,4068,清华大学,2004-06-12 10:42:10.0"
- [21] "258,4068,北京八中,2004-06-12 17:34:02.0"
- [22] "262,4068,香港中文大学,2004-06-12 17:34:02.0"
- [23] "310,4070,首都师范大学初等教育学院,2004-06-14 15:35:52.0"
- [24] "312,4070,北京师范大学经济学院,2004-06-14 15:35:52.0"
复制代码
2. rmr2包的使用
启动R程序
- > library(rmr2)
-
- Loading required package: Rcpp
- Loading required package: RJSONIO
- Loading required package: digest
- Loading required package: functional
- Loading required package: stringr
- Loading required package: plyr
- Loading required package: reshape2
复制代码
2.1 执行r任务
- > small.ints = 1:10
- > sapply(small.ints, function(x) x^2)
-
- [1] 1 4 9 16 25 36 49 64 81 100
复制代码
2.2 执行rmr2任务
- > small.ints = to.dfs(1:10)
-
- 13/03/07 12:12:55 INFO util.NativeCodeLoader: Loaded the native-hadoop library
- 13/03/07 12:12:55 INFO zlib.ZlibFactory: Successfully loaded & initialized native-zlib library
- 13/03/07 12:12:55 INFO compress.CodecPool: Got brand-new compressor
-
- > mapreduce(input = small.ints, map = function(k, v) cbind(v, v^2))
-
- packageJobJar: [/tmp/RtmpWnzxl4/rmr-local-env5deb2b300d03, /tmp/RtmpWnzxl4/rmr-global-env5deb398a522b, /tmp/RtmpWnzxl4/rmr-streaming-map5deb1552172d, /root/hadoop/tmp/hadoop-unjar7838617732558795635/] [] /tmp/streamjob4380275136001813619.jar tmpDir=null
- 13/03/07 12:12:59 INFO mapred.FileInputFormat: Total input paths to process : 1
- 13/03/07 12:12:59 INFO streaming.StreamJob: getLocalDirs(): [/root/hadoop/tmp/mapred/local]
- 13/03/07 12:12:59 INFO streaming.StreamJob: Running job: job_201302261738_0293
- 13/03/07 12:12:59 INFO streaming.StreamJob: To kill this job, run:
- 13/03/07 12:12:59 INFO streaming.StreamJob: /disk1/hadoop/hadoop-1.0.3/libexec/../bin/hadoop job -Dmapred.job.tracker=hdfs://r.qa.tianji.com:9001 -kill job_201302261738_0293
- 13/03/07 12:12:59 INFO streaming.StreamJob: Tracking URL: http://192.168.1.243:50030/jobdetails.jsp?jobid=job_201302261738_0293
- 13/03/07 12:13:00 INFO streaming.StreamJob: map 0% reduce 0%
- 13/03/07 12:13:15 INFO streaming.StreamJob: map 100% reduce 0%
- 13/03/07 12:13:21 INFO streaming.StreamJob: map 100% reduce 100%
- 13/03/07 12:13:21 INFO streaming.StreamJob: Job complete: job_201302261738_0293
- 13/03/07 12:13:21 INFO streaming.StreamJob: Output: /tmp/RtmpWnzxl4/file5deb791fcbd5
-
- > from.dfs("/tmp/RtmpWnzxl4/file5deb791fcbd5")
-
- $key
- NULL
-
- $val
- v
- [1,] 1 1
- [2,] 2 4
- [3,] 3 9
- [4,] 4 16
- [5,] 5 25
- [6,] 6 36
- [7,] 7 49
- [8,] 8 64
- [9,] 9 81
- [10,] 10 100
复制代码
2.3 wordcount执行rmr2任务
- > input<- '/user/hdfs/o_same_school/part-m-00000'
- > wordcount = function(input, output = NULL, pattern = " "){
-
- wc.map = function(., lines) {
- keyval(unlist( strsplit( x = lines,split = pattern)),1)
- }
-
- wc.reduce =function(word, counts ) {
- keyval(word, sum(counts))
- }
-
- mapreduce(input = input ,output = output, input.format = "text",
- map = wc.map, reduce = wc.reduce,combine = T)
- }
-
- > wordcount(input)
-
- packageJobJar: [/tmp/RtmpfZUFEa/rmr-local-env6cac64020a8f, /tmp/RtmpfZUFEa/rmr-global-env6cac73016df3, /tmp/RtmpfZUFEa/rmr-streaming-map6cac7f145e02, /tmp/RtmpfZUFEa/rmr-streaming-reduce6cac238dbcf, /tmp/RtmpfZUFEa/rmr-streaming-combine6cac2b9098d4, /root/hadoop/tmp/hadoop-unjar6584585621285839347/] [] /tmp/streamjob9195921761644130661.jar tmpDir=null
- 13/03/07 12:34:41 INFO util.NativeCodeLoader: Loaded the native-hadoop library
- 13/03/07 12:34:41 WARN snappy.LoadSnappy: Snappy native library not loaded
- 13/03/07 12:34:41 INFO mapred.FileInputFormat: Total input paths to process : 1
- 13/03/07 12:34:41 INFO streaming.StreamJob: getLocalDirs(): [/root/hadoop/tmp/mapred/local]
- 13/03/07 12:34:41 INFO streaming.StreamJob: Running job: job_201302261738_0296
- 13/03/07 12:34:41 INFO streaming.StreamJob: To kill this job, run:
- 13/03/07 12:34:41 INFO streaming.StreamJob: /disk1/hadoop/hadoop-1.0.3/libexec/../bin/hadoop job -Dmapred.job.tracker=hdfs://r.qa.tianji.com:9001 -kill job_201302261738_0296
- 13/03/07 12:34:41 INFO streaming.StreamJob: Tracking URL: http://192.168.1.243:50030/jobdetails.jsp?jobid=job_201302261738_0296
- 13/03/07 12:34:42 INFO streaming.StreamJob: map 0% reduce 0%
- 13/03/07 12:34:59 INFO streaming.StreamJob: map 100% reduce 0%
- 13/03/07 12:35:08 INFO streaming.StreamJob: map 100% reduce 17%
- 13/03/07 12:35:14 INFO streaming.StreamJob: map 100% reduce 100%
- 13/03/07 12:35:20 INFO streaming.StreamJob: Job complete: job_201302261738_0296
- 13/03/07 12:35:20 INFO streaming.StreamJob: Output: /tmp/RtmpfZUFEa/file6cac626aa4a7
-
- > from.dfs("/tmp/RtmpfZUFEa/file6cac626aa4a7")
-
- $key
- [1] "-"
- [2] "04:42:37.0"
- [3] "06:51:53.0"
- [4] "07:10:24.0"
- [5] "09:38:31.0"
- [6] "10:33:25.0"
- [7] "10,3,tsinghua"
- [8] "10:42:10.0"
- [9] "113,4017,Stanford"
- [10] "12:00:38.0"
- [11] "12:17:15.0"
- [12] "123,4019,St"
- [13] "138,4019,香港苏浙小学,2004-05-27"
- [14] "15:21:00.0"
- [15] "15:35:18.0"
- [16] "15:35:52.0"
- [17] "16:18:56.0"
- [18] "172,4020,University,2004-05-27"
- [19] "17:34:02.0"
- [20] "18:04:17.0"
- [21] "182,4026,ff,2004-05-28"
- [22] "183,4026,ff,2004-05-28"
- [23] "18:59:58.0"
- [24] "189,4033,tsinghua,2011-09-14"
- [25] "19:14:34.0"
- [26] "195,4035,ba,2004-05-31"
- [27] "196,4035,ma,2004-05-31"
- [28] "197,4035,southampton"
- [29] "23,4007,北京第一七一中学,2004-05-31"
- [30] "246,4067,美国史丹佛大学,2004-06-12"
- [31] "254,4067,美国史丹佛大学,2004-06-12"
- [32] "255,4067,美国休士顿大学,2004-06-12"
- [33] "257,4068,清华大学,2004-06-12"
- [34] "258,4068,北京八中,2004-06-12"
- [35] "262,4068,香港中文大学,2004-06-12"
- [36] "312,4070,北京师范大学经济学院,2004-06-14"
- [37] "51,4016,大连理工大学,2004-05-27"
- [38] "89,4017,Amherst"
- [39] "92,4017,斯坦福大学,2012-11-28"
- [40] "99,4017,Stanford"
- [41] "Business,2013-02-19"
- [42] "Co-educational"
- [43] "College"
- [44] "College,2004-06-01"
- [45] "Graduate"
- [46] "Hong"
- [47] "Kong,2004-05-27"
- [48] "of"
- [49] "Paul's"
- [50] "School"
- [51] "University"
- [52] "university,2004-05-26"
- [53] "university,2013-01-07"
- [54] "University,2013-02-19"
- [55] "310,4070,首都师范大学初等教育学院,2004-06-14"
-
- $val
- [1] 1 2 1 2 1 1 1 4 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- [39] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
复制代码
|