本帖最后由 52Pig 于 2014-11-8 22:39 编辑
阅读导读:
1.如何设计职位推荐引擎的指标?
2.简述职位推荐引擎所需要的系统架构?
3.如何对推荐结果进行人工比较?
4.职位推荐引擎中什么情况的数据最好做排除?
1. Mahout推荐系统框架概述
Mahout框架包含了一套完整的推荐系统引擎,标准化的数据结构,多样的算法实现,简单的开发流程。Mahout推荐的推荐系统引擎是模块化的,分为5个主要部分组成:数据模型,相似度算法,近邻算法,推荐算法,算法评分器。
更详细的介绍,请参考文章:从源代码剖析Mahout推荐引擎
2. 需求分析:职位推荐引擎指标设计
下面我们将从一个公司案例出发来全面的解释,如何进行职位推荐引擎指标设计。
案例介绍:
互联网某职业社交网站,主要产品包括 个人简历展示页,人脉圈,微博及分享链接,职位发布,职位申请,教育培训等。
用户在完成注册后,需要完善自己的个人信息,包括教育背景,工作经历,项目经历,技能专长等等信息。然后,你要告诉网站,你是否想找工作!!当你选择“是”(求职中),网站会从数据库中为你推荐你可能感兴趣的职位。
通过简短的描述,我们可以粗略地看出,这家职业社交网站的定位和主营业务。核心点有2个:
- 用户:尽可能多的保存有效完整的用户资料
- 服务:帮助用户找到工作,帮助猎头和企业找到员工
因此,职位推荐引擎 将成为这个网站的核心功能。
KPI指标设计
- 通过推荐带来的职位浏览量: 职位网页的PV
- 通过推荐带来的职位申请量: 职位网页的有效转化
3. 算法模型:推荐算法
2个测试数据集:
- pv.csv: 职位被浏览的信息,包括用户ID,职位ID
- job.csv: 职位基本信息,包括职位ID,发布时间,工资标准
1). pv.csv
- 2列数据:用户ID,职位ID(userid,jobid)
- 浏览记录:2500条
- 用户数:1000个,用户ID:1-1000
- 职位数:200个,职位ID:1-200
部分数据:
- 1,11
- 2,136
- 2,187
- 3,165
- 3,1
- 3,24
- 4,8
- 4,199
- 5,32
- 5,100
- 6,14
- 7,59
- 7,147
- 8,92
- 9,165
- 9,80
- 9,171
- 10,45
- 10,31
- 10,1
- 10,152
复制代码
2). job.csv
- 3列数据:职位ID,发布时间,工资标准(jobid,create_date,salary)
- 职位数:200个,职位ID:1-200
部分数据:
- 1,2013-01-24,5600
- 2,2011-03-02,5400
- 3,2011-03-14,8100
- 4,2012-10-05,2200
- 5,2011-09-03,14100
- 6,2011-03-05,6500
- 7,2012-06-06,37000
- 8,2013-02-18,5500
- 9,2010-07-05,7500
- 10,2010-01-23,6700
- 11,2011-09-19,5200
- 12,2010-01-19,29700
- 13,2013-09-28,6000
- 14,2013-10-23,3300
- 15,2010-10-09,2700
- 16,2010-07-14,5100
- 17,2010-05-13,29000
- 18,2010-01-16,21800
- 19,2013-05-23,5700
- 20,2011-04-24,5900
复制代码
为了完成KPI的指标,我们把问题用“技术”语言转化一下:我们需要让职位的推荐结果更准确,从而增加用户的点击。
- 1. 组合使用推荐算法,选出“评估推荐器”验证得分较高的算法
- 2. 人工验证推荐结果
- 3. 职位有时效性,推荐的结果应该是发布半年内的职位
- 4. 工资的标准,应不低于用户浏览职位工资的平均值的80%
我们选择UserCF,ItemCF,SlopeOne的 3种推荐算法,进行7种组合的测试。
- userCF1: LogLikelihoodSimilarity + NearestNUserNeighborhood + GenericBooleanPrefUserBasedRecommender
- userCF2: CityBlockSimilarity+ NearestNUserNeighborhood + GenericBooleanPrefUserBasedRecommender
- userCF3: UserTanimoto + NearestNUserNeighborhood + GenericBooleanPrefUserBasedRecommender
- itemCF1: LogLikelihoodSimilarity + GenericBooleanPrefItemBasedRecommender
- itemCF2: CityBlockSimilarity+ GenericBooleanPrefItemBasedRecommender
- itemCF3: ItemTanimoto + GenericBooleanPrefItemBasedRecommender
- slopeOne:SlopeOneRecommender
关于的推荐算法的详细介绍,请参考文章:Mahout推荐算法API详解
关于算法的组合的详细介绍,请参考文章:从源代码剖析Mahout推荐引擎
4. 架构设计:职位推荐引擎系统架构
上图中,左边是Application业务系统,右边是Mahout,下边是Hadoop集群。
- 1. 当数据量不太大时,并且算法复杂,直接选择用Mahout读取CSV或者Database数据,在单机内存中进行计算。Mahout是多线程的应用,会并行使用单机所有系统资源。
- 2. 当数据量很大时,选择并行化算法(ItemCF),先业务系统的数据导入到Hadoop的HDFS中,然后用Mahout访问HDFS实现算法,这时算法的性能与整个Hadoop集群有关。
- 3. 计算后的结果,保存到数据库中,方便查询
5. 程序开发:基于Mahout的推荐算法实现
开发环境mahout版本为0.8。 ,请参考文章:用Maven构建Mahout项目
新建Java类:
- RecommenderEvaluator.java, 选出“评估推荐器”验证得分较高的算法
- RecommenderResult.java, 对指定数量的结果人工比较
- RecommenderFilterOutdateResult.java,排除过期职位
- RecommenderFilterSalaryResult.java,排除工资过低的职位
1). RecommenderEvaluator.java, 选出“评估推荐器”验证得分较高的算
源代码:
- public class RecommenderEvaluator {
-
- final static int NEIGHBORHOOD_NUM = 2;
- final static int RECOMMENDER_NUM = 3;
-
- public static void main(String[] args) throws TasteException, IOException {
- String file = "datafile/job/pv.csv";
- DataModel dataModel = RecommendFactory.buildDataModelNoPref(file);
- userLoglikelihood(dataModel);
- userCityBlock(dataModel);
- userTanimoto(dataModel);
- itemLoglikelihood(dataModel);
- itemCityBlock(dataModel);
- itemTanimoto(dataModel);
- slopeOne(dataModel);
- }
-
- public static RecommenderBuilder userLoglikelihood(DataModel dataModel) throws TasteException, IOException {
- System.out.println("userLoglikelihood");
- UserSimilarity userSimilarity = RecommendFactory.userSimilarity(RecommendFactory.SIMILARITY.LOGLIKELIHOOD, dataModel);
- UserNeighborhood userNeighborhood = RecommendFactory.userNeighborhood(RecommendFactory.NEIGHBORHOOD.NEAREST, userSimilarity, dataModel, NEIGHBORHOOD_NUM);
- RecommenderBuilder recommenderBuilder = RecommendFactory.userRecommender(userSimilarity, userNeighborhood, false);
-
- RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
- RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
- return recommenderBuilder;
- }
-
- public static RecommenderBuilder userCityBlock(DataModel dataModel) throws TasteException, IOException {
- System.out.println("userCityBlock");
- UserSimilarity userSimilarity = RecommendFactory.userSimilarity(RecommendFactory.SIMILARITY.CITYBLOCK, dataModel);
- UserNeighborhood userNeighborhood = RecommendFactory.userNeighborhood(RecommendFactory.NEIGHBORHOOD.NEAREST, userSimilarity, dataModel, NEIGHBORHOOD_NUM);
- RecommenderBuilder recommenderBuilder = RecommendFactory.userRecommender(userSimilarity, userNeighborhood, false);
-
- RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
- RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
- return recommenderBuilder;
- }
-
- public static RecommenderBuilder userTanimoto(DataModel dataModel) throws TasteException, IOException {
- System.out.println("userTanimoto");
- UserSimilarity userSimilarity = RecommendFactory.userSimilarity(RecommendFactory.SIMILARITY.TANIMOTO, dataModel);
- UserNeighborhood userNeighborhood = RecommendFactory.userNeighborhood(RecommendFactory.NEIGHBORHOOD.NEAREST, userSimilarity, dataModel, NEIGHBORHOOD_NUM);
- RecommenderBuilder recommenderBuilder = RecommendFactory.userRecommender(userSimilarity, userNeighborhood, false);
-
- RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
- RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
- return recommenderBuilder;
- }
-
- public static RecommenderBuilder itemLoglikelihood(DataModel dataModel) throws TasteException, IOException {
- System.out.println("itemLoglikelihood");
- ItemSimilarity itemSimilarity = RecommendFactory.itemSimilarity(RecommendFactory.SIMILARITY.LOGLIKELIHOOD, dataModel);
- RecommenderBuilder recommenderBuilder = RecommendFactory.itemRecommender(itemSimilarity, false);
-
- RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
- RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
- return recommenderBuilder;
- }
-
- public static RecommenderBuilder itemCityBlock(DataModel dataModel) throws TasteException, IOException {
- System.out.println("itemCityBlock");
- ItemSimilarity itemSimilarity = RecommendFactory.itemSimilarity(RecommendFactory.SIMILARITY.CITYBLOCK, dataModel);
- RecommenderBuilder recommenderBuilder = RecommendFactory.itemRecommender(itemSimilarity, false);
-
- RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
- RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
- return recommenderBuilder;
- }
-
- public static RecommenderBuilder itemTanimoto(DataModel dataModel) throws TasteException, IOException {
- System.out.println("itemTanimoto");
- ItemSimilarity itemSimilarity = RecommendFactory.itemSimilarity(RecommendFactory.SIMILARITY.TANIMOTO, dataModel);
- RecommenderBuilder recommenderBuilder = RecommendFactory.itemRecommender(itemSimilarity, false);
-
- RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
- RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
- return recommenderBuilder;
- }
-
- public static RecommenderBuilder slopeOne(DataModel dataModel) throws TasteException, IOException {
- System.out.println("slopeOne");
- RecommenderBuilder recommenderBuilder = RecommendFactory.slopeOneRecommender();
-
- RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
- RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
- return recommenderBuilder;
- }
-
- public static RecommenderBuilder knnLoglikelihood(DataModel dataModel) throws TasteException, IOException {
- System.out.println("knnLoglikelihood");
- ItemSimilarity itemSimilarity = RecommendFactory.itemSimilarity(RecommendFactory.SIMILARITY.LOGLIKELIHOOD, dataModel);
- RecommenderBuilder recommenderBuilder = RecommendFactory.itemKNNRecommender(itemSimilarity, new NonNegativeQuadraticOptimizer(), 10);
-
- RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
- RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
-
- return recommenderBuilder;
- }
-
- public static RecommenderBuilder knnTanimoto(DataModel dataModel) throws TasteException, IOException {
- System.out.println("knnTanimoto");
- ItemSimilarity itemSimilarity = RecommendFactory.itemSimilarity(RecommendFactory.SIMILARITY.TANIMOTO, dataModel);
- RecommenderBuilder recommenderBuilder = RecommendFactory.itemKNNRecommender(itemSimilarity, new NonNegativeQuadraticOptimizer(), 10);
-
- RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
- RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
-
- return recommenderBuilder;
- }
-
- public static RecommenderBuilder knnCityBlock(DataModel dataModel) throws TasteException, IOException {
- System.out.println("knnCityBlock");
- ItemSimilarity itemSimilarity = RecommendFactory.itemSimilarity(RecommendFactory.SIMILARITY.CITYBLOCK, dataModel);
- RecommenderBuilder recommenderBuilder = RecommendFactory.itemKNNRecommender(itemSimilarity, new NonNegativeQuadraticOptimizer(), 10);
-
- RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
- RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
-
- return recommenderBuilder;
- }
-
- public static RecommenderBuilder svd(DataModel dataModel) throws TasteException {
- System.out.println("svd");
- RecommenderBuilder recommenderBuilder = RecommendFactory.svdRecommender(new ALSWRFactorizer(dataModel, 5, 0.05, 10));
-
- RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
- RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
-
- return recommenderBuilder;
- }
-
- public static RecommenderBuilder treeClusterLoglikelihood(DataModel dataModel) throws TasteException {
- System.out.println("treeClusterLoglikelihood");
- UserSimilarity userSimilarity = RecommendFactory.userSimilarity(RecommendFactory.SIMILARITY.LOGLIKELIHOOD, dataModel);
- ClusterSimilarity clusterSimilarity = RecommendFactory.clusterSimilarity(RecommendFactory.SIMILARITY.FARTHEST_NEIGHBOR_CLUSTER, userSimilarity);
- RecommenderBuilder recommenderBuilder = RecommendFactory.treeClusterRecommender(clusterSimilarity, 3);
-
- RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
- RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
-
- return recommenderBuilder;
- }
- }
复制代码
运行结果,控制台输出:
- userLoglikelihood
- AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:0.2741487771272658
- Recommender IR Evaluator: [Precision:0.6424242424242422,Recall:0.4098360655737705]
- userCityBlock
- AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:0.575306732961736
- Recommender IR Evaluator: [Precision:0.919580419580419,Recall:0.4371584699453552]
- userTanimoto
- AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:0.5546485136181523
- Recommender IR Evaluator: [Precision:0.6625766871165644,Recall:0.41803278688524603]
- itemLoglikelihood
- AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:0.5398332608612343
- Recommender IR Evaluator: [Precision:0.26229508196721296,Recall:0.26229508196721296]
- itemCityBlock
- AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:0.9251437840891661
- Recommender IR Evaluator: [Precision:0.02185792349726776,Recall:0.02185792349726776]
- itemTanimoto
- AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:0.9176432856689655
- Recommender IR Evaluator: [Precision:0.26229508196721296,Recall:0.26229508196721296]
- slopeOne
- AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:0.0
- Recommender IR Evaluator: [Precision:0.01912568306010929,Recall:0.01912568306010929]
复制代码
可视化“评估推荐器”输出:
UserCityBlock算法评估的结果是最好的,基于UserCF的算法比ItemCF都要好,SlopeOne算法几乎没有得分。
2). RecommenderResult.java, 对指定数量的结果人工比较
为得到差异化结果,我们分别取UserCityBlock,itemLoglikelihood,对推荐结果人工比较。
源代码:
- public class RecommenderResult {
-
- final static int NEIGHBORHOOD_NUM = 2;
- final static int RECOMMENDER_NUM = 3;
-
- public static void main(String[] args) throws TasteException, IOException {
- String file = "datafile/job/pv.csv";
- DataModel dataModel = RecommendFactory.buildDataModelNoPref(file);
- RecommenderBuilder rb1 = RecommenderEvaluator.userCityBlock(dataModel);
- RecommenderBuilder rb2 = RecommenderEvaluator.itemLoglikelihood(dataModel);
-
- LongPrimitiveIterator iter = dataModel.getUserIDs();
- while (iter.hasNext()) {
- long uid = iter.nextLong();
- System.out.print("userCityBlock =>");
- result(uid, rb1, dataModel);
- System.out.print("itemLoglikelihood=>");
- result(uid, rb2, dataModel);
- }
- }
-
- public static void result(long uid, RecommenderBuilder recommenderBuilder, DataModel dataModel) throws TasteException {
- List list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM);
- RecommendFactory.showItems(uid, list, false);
- }
-
- }
复制代码
控制台输出:只截取部分结果
- ...
- userCityBlock =>uid:968,(61,0.333333)
- itemLoglikelihood=>uid:968,(121,1.429362)(153,1.239939)(198,1.207726)
- userCityBlock =>uid:969,
- itemLoglikelihood=>uid:969,(75,1.326499)(30,0.873100)(85,0.763344)
- userCityBlock =>uid:970,
- itemLoglikelihood=>uid:970,(13,0.748417)(156,0.748417)(122,0.748417)
- userCityBlock =>uid:971,
- itemLoglikelihood=>uid:971,(38,2.060951)(104,1.951208)(83,1.941735)
- userCityBlock =>uid:972,
- itemLoglikelihood=>uid:972,(131,1.378395)(4,1.349386)(87,0.881816)
- userCityBlock =>uid:973,
- itemLoglikelihood=>uid:973,(196,1.432040)(140,1.398066)(130,1.380335)
- userCityBlock =>uid:974,(19,0.200000)
- itemLoglikelihood=>uid:974,(145,1.994049)(121,1.794289)(98,1.738027)
- ...
复制代码
我们查看uid=974的用户推荐信息:
搜索pv.csv:
- > pv[which(pv$userid==974),]
- userid jobid
- 2426 974 106
- 2427 974 173
- 2428 974 82
- 2429 974 188
- 2430 974 78
复制代码
搜索job.csv:
- > job[job$jobid %in% c(145,121,98,19),]
- jobid create_date salary
- 19 19 2013-05-23 5700
- 98 98 2010-01-15 2900
- 121 121 2010-06-19 5300
- 145 145 2013-08-02 6800
复制代码
上面两种算法,推荐的结果都是2010年的职位,这些结果并不是太好,接下来我们要排除过期职位,只保留2013年的职位。
3).RecommenderFilterOutdateResult.java,排除过期职位
源代码:
- public class RecommenderFilterOutdateResult {
-
- final static int NEIGHBORHOOD_NUM = 2;
- final static int RECOMMENDER_NUM = 3;
-
- public static void main(String[] args) throws TasteException, IOException {
- String file = "datafile/job/pv.csv";
- DataModel dataModel = RecommendFactory.buildDataModelNoPref(file);
- RecommenderBuilder rb1 = RecommenderEvaluator.userCityBlock(dataModel);
- RecommenderBuilder rb2 = RecommenderEvaluator.itemLoglikelihood(dataModel);
-
- LongPrimitiveIterator iter = dataModel.getUserIDs();
- while (iter.hasNext()) {
- long uid = iter.nextLong();
- System.out.print("userCityBlock =>");
- filterOutdate(uid, rb1, dataModel);
- System.out.print("itemLoglikelihood=>");
- filterOutdate(uid, rb2, dataModel);
- }
- }
-
- public static void filterOutdate(long uid, RecommenderBuilder recommenderBuilder, DataModel dataModel) throws TasteException, IOException {
- Set jobids = getOutdateJobID("datafile/job/job.csv");
- IDRescorer rescorer = new JobRescorer(jobids);
- List list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM, rescorer);
- RecommendFactory.showItems(uid, list, true);
- }
-
- public static Set getOutdateJobID(String file) throws IOException {
- BufferedReader br = new BufferedReader(new FileReader(new File(file)));
- Set jobids = new HashSet();
- String s = null;
- while ((s = br.readLine()) != null) {
- String[] cols = s.split(",");
- SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
- Date date = null;
- try {
- date = df.parse(cols[1]);
- if (date.getTime() < df.parse("2013-01-01").getTime()) {
- jobids.add(Long.parseLong(cols[0]));
- }
- } catch (ParseException e) {
- e.printStackTrace();
- }
-
- }
- br.close();
- return jobids;
- }
-
- }
-
- class JobRescorer implements IDRescorer {
- final private Set jobids;
-
- public JobRescorer(Set jobs) {
- this.jobids = jobs;
- }
-
- @Override
- public double rescore(long id, double originalScore) {
- return isFiltered(id) ? Double.NaN : originalScore;
- }
-
- @Override
- public boolean isFiltered(long id) {
- return jobids.contains(id);
- }
- }
复制代码
控制台输出:只截取部分结果
- ...
- itemLoglikelihood=>uid:965,(200,0.829600)(122,0.748417)(170,0.736340)
- userCityBlock =>uid:966,(114,0.250000)
- itemLoglikelihood=>uid:966,(114,1.516898)(101,0.864536)(99,0.856057)
- userCityBlock =>uid:967,
- itemLoglikelihood=>uid:967,(105,0.873100)(114,0.725016)(168,0.707119)
- userCityBlock =>uid:968,
- itemLoglikelihood=>uid:968,(174,0.735004)(39,0.696716)(185,0.696171)
- userCityBlock =>uid:969,
- itemLoglikelihood=>uid:969,(197,0.723203)(81,0.710230)(167,0.668358)
- userCityBlock =>uid:970,
- itemLoglikelihood=>uid:970,(13,0.748417)(122,0.748417)(28,0.736340)
- userCityBlock =>uid:971,
- itemLoglikelihood=>uid:971,(28,1.540753)(174,1.511881)(39,1.435575)
- userCityBlock =>uid:972,
- itemLoglikelihood=>uid:972,(14,0.800605)(60,0.794088)(163,0.710230)
- userCityBlock =>uid:973,
- itemLoglikelihood=>uid:973,(56,0.795529)(13,0.712680)(120,0.701026)
- userCityBlock =>uid:974,(19,0.200000)
- itemLoglikelihood=>uid:974,(145,1.994049)(89,1.578694)(19,1.435193)
- ...
复制代码
我们查看uid=994的用户推荐信息:
搜索pv.csv:
- > pv[which(pv$userid==974),]
- userid jobid
- 2426 974 106
- 2427 974 173
- 2428 974 82
- 2429 974 188
- 2430 974 78
复制代码
搜索job.csv:
- > job[job$jobid %in% c(19,145,89),]
- jobid create_date salary
- 19 19 2013-05-23 5700
- 89 89 2013-06-15 8400
- 145 145 2013-08-02 6800
复制代码
排除过期的职位比较,我们发现userCityBlock结果都是19,itemLoglikelihood的第2,3的结果被替换为了得分更低的89和19。
4).RecommenderFilterSalaryResult.java,排除工资过低的职位
我们查看uid=994的用户,浏览过的职位。
- > job[job$jobid %in% c(106,173,82,188,78),]
- jobid create_date salary
- 78 78 2012-01-29 6800
- 82 82 2010-07-05 7500
- 106 106 2011-04-25 5200
- 173 173 2013-09-13 5200
- 188 188 2010-07-14 6000
复制代码
平均工资为=6140,我们觉得用户的浏览职位的行为,一般不会看比自己现在工资低的职位,因此设计算法,排除工资低于平均工资80%的职位,即排除工资小于4912的推荐职位(6140*0.8=4912)
大家可以参考上文中RecommenderFilterOutdateResult.java,自行实现。
这样,我们就完成用Mahout构建职位推荐引擎的算法。如果没有Mahout,我们自己写这个算法引擎估计还要花个小半年的时间,善加利用开源技术会帮助我们飞一样的成长!!
|