分享

中国大数据的发展趋势及误区--非常值得一看

InSight 发表于 2014-11-12 16:44:00 [显示全部楼层] 回帖奖励 阅读模式 关闭右栏 2 7616
本帖最后由 InSight 于 2014-11-12 16:45 编辑
问题导读:
1.中国大数据现阶段的发展趋势有哪些?
2.真正大数据“圈内人”是几种人?
3.如何走出误区?











1、中国大数据的发展趋势

在全球经济、技术一体化的今天,我国IT行业已经开启了大数据的起航之旅,大数据已经在经济领域发挥重要作用。据计世咨讯预测,2012年,政府、互联网、电信、金融等领域市场规模占据近一半的市场份额。大数据在主要经济领域的发展趋势如下:

1)大数据在经济预警方面发挥重要作用

在2008年金融危机中,阿里平台的海量交易记录预测了经济指数的下滑。2008年初,阿里巴巴平台上整个买家询盘数急剧下滑,预示了经济危机的来临。数以万计的中小制造商及时获得阿里巴巴的预警,为预防危机做好了准备。

2)大数据分析成为市场营销的重要手段

与传统的市场研究方法不同,大数据的市场研究方法不再局限于抽样调查,而是基于几乎全样本空间。例如,百度拥有中国最大的消费者行为数据库,覆盖95%的中国网民,搜索市场占比达87%。百度基于最真实的用户行为数据和多维度研究工具,帮助宝洁精准的定位了消费者的地域分布、兴趣爱好等信息,根据百度分析的结论,宝洁适时地调整了营销策略。

3)大数据在临床诊断、远程监控、药品研发等领域发挥重要作用

我国目前已经有十余座城市开展了数字医疗。病历、影像、远程医疗等都会产生大量的数据并形成电子病历及健康档案。基于这些海量数据,医院能够精准地分析病人的体征、治疗费用和疗效数据,可避免过度及副作用较为明显的治疗,此外还可以利用这些数据进行实现计算机远程监护,对慢性病进行管理等。

4)大数据为金融领域的客户管理、营销管理及风险管理提供重要支撑

大数据能够解决金融领域海量数据的存储、查询优化及声音、影像等非结构化数据的处理。金融系统可以通过大数据分析平台,导入客户社交网络、电子商务、终端媒体产生的数据,从而构建客户视图。依托大数据平台可以进行客户行为跟踪、分析,进而获取用户的消费习惯、风险收益偏好等。针对用户这些特性,银行等金融部门能够实施风险及营销管理。

当前,我国正处在全面建成小康社会征程中,工业化、信息化、城镇化、农业现代化任务很重,建设下一代信息基础设施,发展现代信息技术产业体系,健全信息安全保障体系,推进信息网络技术广泛运用,是实现四化同步发展的保证。大数据分析对我们深刻领会世情和国情,把握规律,实现科学发展,做出科学决策具有重要意义。

中国人口居世界首位,将会成为产生数据量最多的国家,但我们对数据保存不够重视,对存储数据的利用率也不高。此外,我国一些部门和机构拥有大量数据却不愿与其他部门共享,导致信息不完整或重复投资。政府应通过体制机制改革打破数据割据与封锁,应注重公开信息,应重视数据挖掘。美国联邦政府建立统一数据开放门户网站,为社会提供信息服务并鼓励挖掘与利用。

2、中国大数据行业的误区

误区一:只有搞大数据技术开发的,才是真正“圈内人”。

笔者曾经参加过若干会议,70%是偏技术的,在场的都是国内各个数据相关项目经理和技术带头人,大家讨论的话题都是在升级CDH版本的时候有什么问题,在处理Hive作业的时候哪种方式更好,在Storm、Kafka匹配时如何效率更高,在Spark应用时内存如何释放这些问题。参会者都一个态度:不懂大数据技术的人没资格评论大数据,您要不懂Hadoop2.0中的资源配置,不懂Spark在内存的驻留时间调优,不懂Kafka采集就别参加这个会!对了,最近Google完全抛弃MR只用Dataflow了,您懂吗?不懂滚粗!

在这里我想说,技术的进步都是由业务驱动的,某宝去了IOE才能叫大数据吗,我作为一个聋哑人按摩师用结绳记事完成了对于不同体型的人,用什么按摩手法进行全流程治疗,就不叫大数据分析了吗?技术发展到什么程度,只有一小部分是由科学家追求极致的精神驱动,大部分原因是因为业务发展到一定程度,要求技术必须做出进步才能达成目标的。

所以,真正的大数据“圈内人”至少要包含以下几种人:

1)业务运营人员

比如互联网的产品经理要求技术人员,必须在用户到达网站的时候就算出他今天的心情指数,而且要实现动态监测,这时候只能用Storm或者Spark来处理了;比如电信运营商要求做到实时营销,用户进入营业厅的时候,必须马上推送短信给用户,提示他本营业厅有一个特别适合他的相亲对象(呈现身高、三围、体重等指标),但是见面前要先购买4G手机;再比如病人来到银行开户,银行了解到用户最近1周曾经去医院门诊过两次,出国旅游过3次,带孩子游泳两次,马上客户经理就给客户推荐相关的银行保险+理财产品。这些业务人员,往往是驱动技术进步的核心原因。

2)架构师

架构师有多么重要,当一个业务人员和一个工程师,一个说着业务语言,一个说着技术术语在那里讨论问题的时候,工程师往往想着用什么样的代码能马上让他闭嘴,而架构师往往会跳出来说“不,不能那样,你这样写只能解决一个问题并且会制造后续的若干问题,按照我这个方案来,可以解决后续的若干问题!”一个非技术企业的IT系统水平,往往有70%以上的标准掌握在架构设计人员手里,尽快很多优秀的架构师都是从工程师慢慢发展学习而来的,IT架构的重要性,很多企业都意识到了,这就是很多企业有CTO和CIO两个职位,同样重要!架构之美,当IT系统平稳运行的时候没人能感受到,但是在一个烟囱林立、架构混乱的环境中走过的人眼中,IT开发一定要架构现行,开发在后!

3)投资人

老板,不用说了,老板给你吃穿,你给老板卖命,天生的基础资料提供者,老板说要有山便有了山,老板说要做实时数据处理分析,便有了Storm,老板说要做开源,便有了Hadoop,老板还说要做迭代挖掘,便有了Spark……

4)科学家

他们是别人眼中的Geek,他们是别人眼中的高大上,他们是类似于霍金一样的神秘的早出晚归昼伏夜出的眼睛男女,他们是驱动世界技术进步的核心力量。除了世界顶级的IT公司(往往世界技术方向掌握在他们手中),其他公司一般需要1-2个科学家足以,他们是真正投身于科学的人,不要让他们去考虑业务场景,不要让他们去考虑业务流程,不要让他们去计算成本,不要让他们去考虑项目进度,他们唯一需要考虑的就是如何在某个指标上击败对手,在某个指标上提高0.1%已经让他们可以连续奋战,不眠不休,让我们都为这些科学家喝彩和欢呼吧。在中国,我认为真正的大数据科学家不超过百人……

5)工程师

工程师是这样一群可爱的人,他们年轻,冲动,有理想,又被人尊称为“屌丝”“键盘党”,他们孜孜不倦的为自己的理想而拼搏,每次自己取得一点点进步的时候,都在考虑是不是地铁口的鸡蛋灌饼又涨了五毛钱。他们敏感,自负,从来不屑于和业务人员去争论。工程师和科学家的不同点在于,工程师需要频繁改动代码,频繁测试程序,频繁上线,但是最后的系统是由若干工程师的代码组合起来的。每个自负的工程师看到系统的历史代码都会鄙视的发出一声“哼,这垃圾代码”,之后便投入到被后人继续鄙视的代码编写工作中去。

6)跟风者

他们中有些是培训师,有些是杀马特洗剪吹,有些是煤老板有些是失足少女。他们的特点就是炒,和炒房者唯一不同的就是,他们不用付出金钱,他们认为只要和数据沾边就叫大数据,他们有些人甚至从来没碰过IT系统,他们是浑水摸鱼、滥竽充数的高手,他们是被前几种人鄙视的隐形人。不过我想说,欢迎来炒,一个行业炒的越凶,真正有价值的人就更能发挥自己的作用。

误区二:只有大数据才能拯救世界

大数据目前的技术和应用都是在数据分析、数据仓库等方面,主要针对OLAP(OnlineAnalyticalSystem),从技术角度来说,包含我总结的两条腿:一条腿是批量数据处理(包括MR、MPP等),另一条腿实时数据流处理(Storm、内存数据库等)。

在此基础上,部分场景又发现MR框架或实时框架不能很好的满足近线、迭代的挖掘需要,故又产生了目前非常火的基于内存数据处理Spark框架。很多企业目前的大数据框架是,一方面以Hadoop2.0之上的Hive、Pig框架处理底层的数据加工和处理,把按照业务逻辑处理完的数据直接送入到应用数据库中;另一方面以Storm流处理引擎处理实时的数据,根据业务营销的规则触发相应的营销场景。同时,用基于Spark处理技术集群满足对于实时数据加工、挖掘的需求。

以上描述可以看出,大数据说白了就是还没有进入真正的交易系统,没有在OLTP(OnlineTransactionsystem)方面做出太大的贡献。至于很多文章把大数据和物联网、泛在网、智慧城市都联系在一起,我认为大数据不过是条件之一,其余的OLTP系统是否具备,物理网络甚至组织架构都是重要因素。

最后还想说,大数据处理技术,再炫如Google的Dataflow或成熟如Hadoop2.0、数据仓库、Storm等,本质上都是数据加工工具,对于很多工程师来说,只需要把数据处理流程搞清楚就可以了,在这个平台上可以用固定的模版和脚本进行数据加工已经足够。毕竟数据的价值70%以上是对业务应用而言的,一个炫词对于业务如果没有帮助,终将只是屠龙之术。任何技术、IT架构都要符合业务规划、符合业务发展的要求,否则技术只会妨碍业务和生产力的发展。

随着时代变迁,大浪淘沙,作为数据行业的一员,我们每个人都在不同的角色之间转换,今天你可能是科学家,明天就会变成架构师,今天的工程师也会变成几年后的科学家,部分人还终将步入跟风者的行列。


转。


已有(2)人评论

跳转到指定楼层
wubaozhou 发表于 2014-12-31 13:52:30
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

推荐上一条 /2 下一条